Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions
Under consideration is the damped semilinear wave equation $$ u_{tt}+u_t-\Delta u+u+f(u)=0 $$ in a bounded domain $\Omega$ in $\mathbb{R}^3$ subject to an acoustic boundary condition with a singular perturbation, which we term "massless acoustic perturbation", $$ \varepsilon\delta_...
Päätekijä: | Joseph L. Shomberg |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Texas State University
2018-08-01
|
Sarja: | Electronic Journal of Differential Equations |
Aiheet: | |
Linkit: | http://ejde.math.txstate.edu/Volumes/2018/152/abstr.html |
Samankaltaisia teoksia
-
On the upper semicontinuity of global attractors for damped wave equations
Tekijä: Joseph L. Shomberg
Julkaistu: (2017-09-01) -
Robust exponential attractors for singularly perturbed phase-field type equations
Tekijä: Alain Miranville, et al.
Julkaistu: (2002-07-01) -
Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings
Tekijä: Gongwei Liu, et al.
Julkaistu: (2022-07-01) -
Attractors and their structure for semilinear wave equations with nonlinear boundary dissipation
Tekijä: Irena Lasiecka, et al.
Julkaistu: (2004-07-01) -
Fitted numerical method for singularly perturbed semilinear three-point boundary value problem
Tekijä: M. Gebeyehu, et al.
Julkaistu: (2022-03-01)