Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions
Under consideration is the damped semilinear wave equation $$ u_{tt}+u_t-\Delta u+u+f(u)=0 $$ in a bounded domain $\Omega$ in $\mathbb{R}^3$ subject to an acoustic boundary condition with a singular perturbation, which we term "massless acoustic perturbation", $$ \varepsilon\delta_...
Huvudupphovsman: | Joseph L. Shomberg |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Texas State University
2018-08-01
|
Serie: | Electronic Journal of Differential Equations |
Ämnen: | |
Länkar: | http://ejde.math.txstate.edu/Volumes/2018/152/abstr.html |
Liknande verk
Liknande verk
-
On the upper semicontinuity of global attractors for damped wave equations
av: Joseph L. Shomberg
Publicerad: (2017-09-01) -
Robust exponential attractors for singularly perturbed phase-field type equations
av: Alain Miranville, et al.
Publicerad: (2002-07-01) -
Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings
av: Gongwei Liu, et al.
Publicerad: (2022-07-01) -
Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation
av: Yonghai Wang, et al.
Publicerad: (2021-06-01) -
Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain
av: Severino Horacio Da Silva
Publicerad: (2010-09-01)