Topics on $(H,Poly(P))$-Hypergroups

‎In this paper‎, ‎we construct a hypergroup by using a hypergroup‎ ‎$(H,\circ)$ and a polygroup $(P,\cdot)$‎, ‎and call it‎ ‎$(H,Poly(P))$-hypergroup‎. ‎The method of constructing hypergroups in this paper is not present in the established techniques of group theory‎. ‎Moreover‎, ‎we compare‎ ‎$(H,P...

Full description

Bibliographic Details
Main Authors: Saeed Mirvakili, Somayeh Hosseini, Bijan Davvaz
Format: Article
Language:English
Published: University of Kashan 2023-08-01
Series:Mathematics Interdisciplinary Research
Subjects:
Online Access:https://mir.kashanu.ac.ir/article_113908_f36a8692669d2839e7cf27e16283d122.pdf
_version_ 1797630807422009344
author Saeed Mirvakili
Somayeh Hosseini
Bijan Davvaz
author_facet Saeed Mirvakili
Somayeh Hosseini
Bijan Davvaz
author_sort Saeed Mirvakili
collection DOAJ
description ‎In this paper‎, ‎we construct a hypergroup by using a hypergroup‎ ‎$(H,\circ)$ and a polygroup $(P,\cdot)$‎, ‎and call it‎ ‎$(H,Poly(P))$-hypergroup‎. ‎The method of constructing hypergroups in this paper is not present in the established techniques of group theory‎. ‎Moreover‎, ‎we compare‎ ‎$(H,Poly(P))$-hypergroups with $K_H$-hypergroups‎, ‎complete‎ ‎hypergroups and extensions of polygroups by polygroups‎.
first_indexed 2024-03-11T11:13:07Z
format Article
id doaj.art-17cede8fad494a21a8d82de5c14bd418
institution Directory Open Access Journal
issn 2476-4965
language English
last_indexed 2024-03-11T11:13:07Z
publishDate 2023-08-01
publisher University of Kashan
record_format Article
series Mathematics Interdisciplinary Research
spelling doaj.art-17cede8fad494a21a8d82de5c14bd4182023-11-11T10:09:29ZengUniversity of KashanMathematics Interdisciplinary Research2476-49652023-08-018212314010.22052/mir.2023.245979.1332113908Topics on $(H,Poly(P))$-HypergroupsSaeed Mirvakili0Somayeh Hosseini1Bijan Davvaz2Department of Mathematics, Payame Noor University, Tehran, IranDepartment of Mathematics, Payame Noor University, Tehran, IranDepartment of Mathematical Sciences, Yazd University, Yazd, Iran‎In this paper‎, ‎we construct a hypergroup by using a hypergroup‎ ‎$(H,\circ)$ and a polygroup $(P,\cdot)$‎, ‎and call it‎ ‎$(H,Poly(P))$-hypergroup‎. ‎The method of constructing hypergroups in this paper is not present in the established techniques of group theory‎. ‎Moreover‎, ‎we compare‎ ‎$(H,Poly(P))$-hypergroups with $K_H$-hypergroups‎, ‎complete‎ ‎hypergroups and extensions of polygroups by polygroups‎.https://mir.kashanu.ac.ir/article_113908_f36a8692669d2839e7cf27e16283d122.pdf$(h,g)$-hypergroups$(hpoly(p))$-hypergroup$k_h$-hypergrouphypergrouppolygroup
spellingShingle Saeed Mirvakili
Somayeh Hosseini
Bijan Davvaz
Topics on $(H,Poly(P))$-Hypergroups
Mathematics Interdisciplinary Research
$(h,g)$-hypergroups
$(h
poly(p))$-hypergroup
$k_h$-hypergroup
hypergroup
polygroup
title Topics on $(H,Poly(P))$-Hypergroups
title_full Topics on $(H,Poly(P))$-Hypergroups
title_fullStr Topics on $(H,Poly(P))$-Hypergroups
title_full_unstemmed Topics on $(H,Poly(P))$-Hypergroups
title_short Topics on $(H,Poly(P))$-Hypergroups
title_sort topics on h poly p hypergroups
topic $(h,g)$-hypergroups
$(h
poly(p))$-hypergroup
$k_h$-hypergroup
hypergroup
polygroup
url https://mir.kashanu.ac.ir/article_113908_f36a8692669d2839e7cf27e16283d122.pdf
work_keys_str_mv AT saeedmirvakili topicsonhpolyphypergroups
AT somayehhosseini topicsonhpolyphypergroups
AT bijandavvaz topicsonhpolyphypergroups