Bifurcation of solutions of nonlinear Sturm–Liouville problems

<p/> <p>A global bifurcation theorem for the following nonlinear Sturm&#8211;Liouville problem is given <inline-formula><graphic file="1029-242X-2001-347025-i1.gif"/></inline-formula></p> <p>Moreover we give various versions of existence theore...

Full description

Bibliographic Details
Main Author: Gulgowski Jacek
Format: Article
Language:English
Published: SpringerOpen 2001-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/6/347025
Description
Summary:<p/> <p>A global bifurcation theorem for the following nonlinear Sturm&#8211;Liouville problem is given <inline-formula><graphic file="1029-242X-2001-347025-i1.gif"/></inline-formula></p> <p>Moreover we give various versions of existence theorems for boundary value problems <inline-formula><graphic file="1029-242X-2001-347025-i2.gif"/></inline-formula>The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem <inline-formula><graphic file="1029-242X-2001-347025-i3.gif"/></inline-formula>, associated with the boundary value problem <inline-formula><graphic file="1029-242X-2001-347025-i4.gif"/></inline-formula>, in such a way that <inline-formula><graphic file="1029-242X-2001-347025-i5.gif"/></inline-formula>.</p>
ISSN:1025-5834
1029-242X