Bifurcation of solutions of nonlinear Sturm–Liouville problems
<p/> <p>A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given <inline-formula><graphic file="1029-242X-2001-347025-i1.gif"/></inline-formula></p> <p>Moreover we give various versions of existence theore...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2001-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/6/347025 |
Summary: | <p/> <p>A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given <inline-formula><graphic file="1029-242X-2001-347025-i1.gif"/></inline-formula></p> <p>Moreover we give various versions of existence theorems for boundary value problems <inline-formula><graphic file="1029-242X-2001-347025-i2.gif"/></inline-formula>The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem <inline-formula><graphic file="1029-242X-2001-347025-i3.gif"/></inline-formula>, associated with the boundary value problem <inline-formula><graphic file="1029-242X-2001-347025-i4.gif"/></inline-formula>, in such a way that <inline-formula><graphic file="1029-242X-2001-347025-i5.gif"/></inline-formula>.</p> |
---|---|
ISSN: | 1025-5834 1029-242X |