Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications
This paper presents an efficient fuzzy logic control system for charging and discharging of the battery energy storage system in microgrid applications. Energy storage system can store energy during the off-peak hour and supply energy during peak hours in order to maintain the energy balance between...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8890729/ |
_version_ | 1818855374911963136 |
---|---|
author | M. Faisal M. A. Hannan Pin Jern Ker M. Nasir Uddin |
author_facet | M. Faisal M. A. Hannan Pin Jern Ker M. Nasir Uddin |
author_sort | M. Faisal |
collection | DOAJ |
description | This paper presents an efficient fuzzy logic control system for charging and discharging of the battery energy storage system in microgrid applications. Energy storage system can store energy during the off-peak hour and supply energy during peak hours in order to maintain the energy balance between the storage and microgrid. However, the integration of battery storage system with microgrid requires a flexible control of charging-discharging technique due to the variable load conditions. Therefore, a comparative evaluation of the developed model is analyzed by considering controllers with fuzzy only and optimized fuzzy algorithms. In this paper, backtracking search algorithm based fuzzy optimization is introduced to evaluate the state of charge of the battery by optimizing the input and output fuzzy membership functions of rate of change of the state of charge and power balance. Backtracking search algorithm is chosen due to its high convergence speed, and it is good for searching and exploration process with exploiting capabilities. To validate the performance of the developed controller, the obtained results are compared to the results obtained with the particle swarm optimization based fuzzy and fuzzy only controllers, respectively. Results show that the backtracking search algorithm based fuzzy optimization outperforms the other control methods in terms of effectively manage the charging-discharging of the battery storage to ensure the desired outcome and reliable microgrid operation. |
first_indexed | 2024-12-19T08:07:36Z |
format | Article |
id | doaj.art-17ecfb355c294be4afd769e4d38a9871 |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-12-19T08:07:36Z |
publishDate | 2019-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-17ecfb355c294be4afd769e4d38a98712022-12-21T20:29:43ZengIEEEIEEE Access2169-35362019-01-01715935715936810.1109/ACCESS.2019.29511328890729Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid ApplicationsM. Faisal0https://orcid.org/0000-0002-5660-0203M. A. Hannan1https://orcid.org/0000-0001-8367-4112Pin Jern Ker2https://orcid.org/0000-0002-5703-1735M. Nasir Uddin3https://orcid.org/0000-0002-2860-3124Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, MalaysiaDepartment of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, MalaysiaDepartment of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, MalaysiaDepartment of Electrical Engineering, Lakehead University, Thunder Bay, ON, CanadaThis paper presents an efficient fuzzy logic control system for charging and discharging of the battery energy storage system in microgrid applications. Energy storage system can store energy during the off-peak hour and supply energy during peak hours in order to maintain the energy balance between the storage and microgrid. However, the integration of battery storage system with microgrid requires a flexible control of charging-discharging technique due to the variable load conditions. Therefore, a comparative evaluation of the developed model is analyzed by considering controllers with fuzzy only and optimized fuzzy algorithms. In this paper, backtracking search algorithm based fuzzy optimization is introduced to evaluate the state of charge of the battery by optimizing the input and output fuzzy membership functions of rate of change of the state of charge and power balance. Backtracking search algorithm is chosen due to its high convergence speed, and it is good for searching and exploration process with exploiting capabilities. To validate the performance of the developed controller, the obtained results are compared to the results obtained with the particle swarm optimization based fuzzy and fuzzy only controllers, respectively. Results show that the backtracking search algorithm based fuzzy optimization outperforms the other control methods in terms of effectively manage the charging-discharging of the battery storage to ensure the desired outcome and reliable microgrid operation.https://ieeexplore.ieee.org/document/8890729/Fuzzy controllerstate of chargebattery energy storageoptimizationcharging-dischargingmicrogrid |
spellingShingle | M. Faisal M. A. Hannan Pin Jern Ker M. Nasir Uddin Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications IEEE Access Fuzzy controller state of charge battery energy storage optimization charging-discharging microgrid |
title | Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications |
title_full | Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications |
title_fullStr | Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications |
title_full_unstemmed | Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications |
title_short | Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications |
title_sort | backtracking search algorithm based fuzzy charging discharging controller for battery storage system in microgrid applications |
topic | Fuzzy controller state of charge battery energy storage optimization charging-discharging microgrid |
url | https://ieeexplore.ieee.org/document/8890729/ |
work_keys_str_mv | AT mfaisal backtrackingsearchalgorithmbasedfuzzychargingdischargingcontrollerforbatterystoragesysteminmicrogridapplications AT mahannan backtrackingsearchalgorithmbasedfuzzychargingdischargingcontrollerforbatterystoragesysteminmicrogridapplications AT pinjernker backtrackingsearchalgorithmbasedfuzzychargingdischargingcontrollerforbatterystoragesysteminmicrogridapplications AT mnasiruddin backtrackingsearchalgorithmbasedfuzzychargingdischargingcontrollerforbatterystoragesysteminmicrogridapplications |