Self-supervised light fluence correction network for photoacoustic tomography based on diffusion equation

Deep learning (DL) shows promise in estimating the absorption coefficient distribution of biological tissue in quantitative photoacoustic tomography (QPAT) imaging, but its application is limited by a lack of ground truth for supervised network training. To address this issue, we propose a DL-based...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhaoyong Liang, Zongxin Mo, Shuangyang Zhang, Long Chen, Danni Wang, Chaobin Hu, Li Qi
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: Elsevier 2025-04-01
Σειρά:Photoacoustics
Θέματα:
Διαθέσιμο Online:http://www.sciencedirect.com/science/article/pii/S2213597925000035