Power Integrity Analysis of Power Distribution Network Segmented Using DGS–Electromagnetic Bandgap Structure in Mixed-Signal PCBs

In this paper, we present the power integrity analysis of a power distribution network (PDN) employing a segmentation technique based on the electromagnetic bandgap (EBG) structure with a defected ground structure (DGS). For efficient analysis of power integrity, a domain decomposition method (DDM)...

Full description

Bibliographic Details
Main Author: Myunghoi Kim
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/12/2036
Description
Summary:In this paper, we present the power integrity analysis of a power distribution network (PDN) employing a segmentation technique based on the electromagnetic bandgap (EBG) structure with a defected ground structure (DGS). For efficient analysis of power integrity, a domain decomposition method (DDM) with a novel modeling of the DGS–EBG-based PDN is presented. In the DDM, analytical models for the partitioned parts of the PDN are developed, and their impedance parameters are analytically extracted. The resonant modes for the power integrity analysis are rigorously examined using the DDM and electric-field distribution. The effect of the DGS–EBG stopband on the resonant modes are analyzed. The proposed DDM and power integrity analysis are verified using full-wave simulation and measurements. The DDM result shows good agreement with the full-wave simulation and measurements.
ISSN:2079-9292