Loss of PERK function promotes ferroptosis by downregulating SLC7A11 (System Xc⁻) in colorectal cancer

Ferroptosis, a genetically and biochemically distinct form of programmed cell death, is characterised by an iron-dependent accumulation of lipid peroxides. Therapy-resistant tumor cells display vulnerability toward ferroptosis. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) pl...

Full description

Bibliographic Details
Main Authors: Krishan Kumar Saini, Priyank Chaturvedi, Abhipsa Sinha, Manish Pratap Singh, Muqtada Ali Khan, Ayushi Verma, Mushtaq Ahmad Nengroo, Saumya Ranjan Satrusal, Sanjeev Meena, Akhilesh Singh, Sameer Srivastava, Jayanta Sarkar, Dipak Datta
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Redox Biology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213231723002343
Description
Summary:Ferroptosis, a genetically and biochemically distinct form of programmed cell death, is characterised by an iron-dependent accumulation of lipid peroxides. Therapy-resistant tumor cells display vulnerability toward ferroptosis. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a critical role in cancer cells to become therapy resistant. Tweaking the balance of UPR to make cancer cells susceptible to ferroptotic cell death could be an attractive therapeutic strategy. To decipher the emerging contribution of ER stress in the ferroptotic process, we observe that ferroptosis inducer RSL3 promotes UPR (PERK, ATF6, and IRE1α), along with overexpression of cystine-glutamate transporter SLC7A11 (System Xc-). Exploring the role of a particular UPR arm in modulating SLC7A11 expression and subsequent ferroptosis, we notice that PERK is selectively critical in inducing ferroptosis in colorectal carcinoma. PERK inhibition reduces ATF4 expression and recruitment to the promoter of SLC7A11 and results in its downregulation. Loss of PERK function not only primes cancer cells for increased lipid peroxidation but also limits in vivo colorectal tumor growth, demonstrating active signs of ferroptotic cell death in situ. Further, by performing TCGA data mining and using colorectal cancer patient samples, we demonstrate that the expression of PERK and SLC7A11 is positively correlated. Overall, our experimental data indicate that PERK is a negative regulator of ferroptosis and loss of PERK function sensitizes colorectal cancer cells to ferroptosis. Therefore, small molecule PERK inhibitors hold huge promise as novel therapeutics and their potential can be harnessed against the apoptosis-resistant condition.
ISSN:2213-2317