Inverses and eigenvalues of diamondalternating sign matrices

An n × n diamond alternating sign matrix (ASM) is a (0, +1, −1)-matrix with ±1 entries alternatingand arranged in a diamond-shaped pattern. The explicit inverse (for n even) or generalized inverse (for nodd) of a diamond ASM is derived. The eigenvalues of diamond ASMs are considered and when n is ev...

Full description

Bibliographic Details
Main Authors: Catral Minerva, Lin Minghua, Olesky D. D., van den Driessche P.
Format: Article
Language:English
Published: De Gruyter 2014-02-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.2478/spma-2014-0008
_version_ 1818676459078680576
author Catral Minerva
Lin Minghua
Olesky D. D.
van den Driessche P.
author_facet Catral Minerva
Lin Minghua
Olesky D. D.
van den Driessche P.
author_sort Catral Minerva
collection DOAJ
description An n × n diamond alternating sign matrix (ASM) is a (0, +1, −1)-matrix with ±1 entries alternatingand arranged in a diamond-shaped pattern. The explicit inverse (for n even) or generalized inverse (for nodd) of a diamond ASM is derived. The eigenvalues of diamond ASMs are considered and when n is even, thecharacteristic polynomial, which involves signed binomial coefficients, is determined.
first_indexed 2024-12-17T08:43:48Z
format Article
id doaj.art-180e18104a7e44219932d97f73cf17ef
institution Directory Open Access Journal
issn 2300-7451
language English
last_indexed 2024-12-17T08:43:48Z
publishDate 2014-02-01
publisher De Gruyter
record_format Article
series Special Matrices
spelling doaj.art-180e18104a7e44219932d97f73cf17ef2022-12-21T21:56:15ZengDe GruyterSpecial Matrices2300-74512014-02-012110.2478/spma-2014-0008spma-2014-0008Inverses and eigenvalues of diamondalternating sign matricesCatral Minerva0Lin Minghua1Olesky D. D.2van den Driessche P.3Department of Mathematics and Computer Science, Xavier University, Cincinnati,OH 45207, USADepartment of Mathematics and Statistics, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 2Y2,CanadaDepartment of Computer Science, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 2Y2, CanadaDepartment of Mathematics and Statistics, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 2Y2,CanadaAn n × n diamond alternating sign matrix (ASM) is a (0, +1, −1)-matrix with ±1 entries alternatingand arranged in a diamond-shaped pattern. The explicit inverse (for n even) or generalized inverse (for nodd) of a diamond ASM is derived. The eigenvalues of diamond ASMs are considered and when n is even, thecharacteristic polynomial, which involves signed binomial coefficients, is determined.https://doi.org/10.2478/spma-2014-0008diamond alternating sign matrixinversegeneralized inverseeigenvaluebinomial coefficients15a0915a1815b36
spellingShingle Catral Minerva
Lin Minghua
Olesky D. D.
van den Driessche P.
Inverses and eigenvalues of diamondalternating sign matrices
Special Matrices
diamond alternating sign matrix
inverse
generalized inverse
eigenvalue
binomial coefficients
15a09
15a18
15b36
title Inverses and eigenvalues of diamondalternating sign matrices
title_full Inverses and eigenvalues of diamondalternating sign matrices
title_fullStr Inverses and eigenvalues of diamondalternating sign matrices
title_full_unstemmed Inverses and eigenvalues of diamondalternating sign matrices
title_short Inverses and eigenvalues of diamondalternating sign matrices
title_sort inverses and eigenvalues of diamondalternating sign matrices
topic diamond alternating sign matrix
inverse
generalized inverse
eigenvalue
binomial coefficients
15a09
15a18
15b36
url https://doi.org/10.2478/spma-2014-0008
work_keys_str_mv AT catralminerva inversesandeigenvaluesofdiamondalternatingsignmatrices
AT linminghua inversesandeigenvaluesofdiamondalternatingsignmatrices
AT oleskydd inversesandeigenvaluesofdiamondalternatingsignmatrices
AT vandendriesschep inversesandeigenvaluesofdiamondalternatingsignmatrices