A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment

Abstract Background Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model...

Full description

Bibliographic Details
Main Authors: Yongluo Jiang, Yixing Wang, Sha Fu, Tao Chen, Yixin Zhou, Xuanye Zhang, Chen Chen, Li‐na He, Wei Du, Haifeng Li, Zuan Lin, Yuanyuan Zhao, Yunpeng Yang, Hongyun Zhao, Wenfeng Fang, Yan Huang, Shaodong Hong, Li Zhang
Format: Article
Language:English
Published: Wiley 2022-06-01
Series:Thoracic Cancer
Subjects:
Online Access:https://doi.org/10.1111/1759-7714.14386
_version_ 1818534490951122944
author Yongluo Jiang
Yixing Wang
Sha Fu
Tao Chen
Yixin Zhou
Xuanye Zhang
Chen Chen
Li‐na He
Wei Du
Haifeng Li
Zuan Lin
Yuanyuan Zhao
Yunpeng Yang
Hongyun Zhao
Wenfeng Fang
Yan Huang
Shaodong Hong
Li Zhang
author_facet Yongluo Jiang
Yixing Wang
Sha Fu
Tao Chen
Yixin Zhou
Xuanye Zhang
Chen Chen
Li‐na He
Wei Du
Haifeng Li
Zuan Lin
Yuanyuan Zhao
Yunpeng Yang
Hongyun Zhao
Wenfeng Fang
Yan Huang
Shaodong Hong
Li Zhang
author_sort Yongluo Jiang
collection DOAJ
description Abstract Background Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. Methods A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. Results Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). Conclusion We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM.
first_indexed 2024-12-11T18:12:19Z
format Article
id doaj.art-1813850a98a94b6db579f9e23f06634c
institution Directory Open Access Journal
issn 1759-7706
1759-7714
language English
last_indexed 2024-12-11T18:12:19Z
publishDate 2022-06-01
publisher Wiley
record_format Article
series Thoracic Cancer
spelling doaj.art-1813850a98a94b6db579f9e23f06634c2022-12-22T00:55:31ZengWileyThoracic Cancer1759-77061759-77142022-06-0113111558156910.1111/1759-7714.14386A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatmentYongluo Jiang0Yixing Wang1Sha Fu2Tao Chen3Yixin Zhou4Xuanye Zhang5Chen Chen6Li‐na He7Wei Du8Haifeng Li9Zuan Lin10Yuanyuan Zhao11Yunpeng Yang12Hongyun Zhao13Wenfeng Fang14Yan Huang15Shaodong Hong16Li Zhang17State Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaCellular & Molecular Diagnostics Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaState Key Laboratory of Oncology in South China Guangzhou ChinaAbstract Background Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. Methods A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. Results Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). Conclusion We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM.https://doi.org/10.1111/1759-7714.14386ALK‐positiveimage biomarkerslung cancerresponse predictiontargeted therapy
spellingShingle Yongluo Jiang
Yixing Wang
Sha Fu
Tao Chen
Yixin Zhou
Xuanye Zhang
Chen Chen
Li‐na He
Wei Du
Haifeng Li
Zuan Lin
Yuanyuan Zhao
Yunpeng Yang
Hongyun Zhao
Wenfeng Fang
Yan Huang
Shaodong Hong
Li Zhang
A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
Thoracic Cancer
ALK‐positive
image biomarkers
lung cancer
response prediction
targeted therapy
title A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_full A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_fullStr A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_full_unstemmed A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_short A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_sort ct based radiomics model to predict subsequent brain metastasis in patients with alk rearranged non small cell lung cancer undergoing crizotinib treatment
topic ALK‐positive
image biomarkers
lung cancer
response prediction
targeted therapy
url https://doi.org/10.1111/1759-7714.14386
work_keys_str_mv AT yongluojiang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yixingwang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT shafu actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT taochen actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yixinzhou actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT xuanyezhang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chenchen actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT linahe actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT weidu actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT haifengli actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zuanlin actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yuanyuanzhao actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yunpengyang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT hongyunzhao actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT wenfengfang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yanhuang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT shaodonghong actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT lizhang actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yongluojiang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yixingwang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT shafu ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT taochen ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yixinzhou ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT xuanyezhang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chenchen ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT linahe ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT weidu ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT haifengli ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zuanlin ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yuanyuanzhao ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yunpengyang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT hongyunzhao ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT wenfengfang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yanhuang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT shaodonghong ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT lizhang ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment