Controllable synthesis of sphere-shaped interconnected interlinked binder-free nickel sulfide@nickel foam for high-performance supercapacitor applications

Abstract The fabrication of energy storage electrode materials with high specific capacitance and rapid charge–discharge capability has become an essential and major issue of concern in recent years. In the present work, sphere-shaped interconnected interlinked binder-free nickel sulfide (NiS) grown...

Full description

Bibliographic Details
Main Authors: Batool Taher Al-Abawi, Nazish Parveen, Sajid Ali Ansari
Format: Article
Language:English
Published: Nature Portfolio 2022-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-18728-1
Description
Summary:Abstract The fabrication of energy storage electrode materials with high specific capacitance and rapid charge–discharge capability has become an essential and major issue of concern in recent years. In the present work, sphere-shaped interconnected interlinked binder-free nickel sulfide (NiS) grown on the surface of a three-dimensional nickel foam (3DNF) was fabricated by a one-step solvothermal method under optimized synthesis conditions, including different solvents, amounts of sulfur, and experimental reaction times. The fabricated binder-free SS-NiS@3DNF-E electrodes were characterized by a range of spectroscopic and microscopic techniques and further evaluated for their comparative electrochemical supercapacitive performance in half-cell assembly cells. The optimized sphere-shaped interconnected interlinked binder-free SS-NiS@3DNF-E-3 electrode showed an outstanding specific capacitance of 694.0 F/g compared to SS-NiS@3DNF-E-1 (188.0 F/g), SS-NiS@3DNF-E-2 (470.0 F/g), and SS-NiS@3DNF-E-4 (230.0 F/g) as well as excellent cycling stability up to 88% after 6700 continuous charge–discharge cycles, with an energy density of 24.9 Wh/kg at a power density of 250.93 W/kg. The obtained results demonstrate that the interconnected interlinked binder-free NiS@nickel electrode is a potential candidate for energy storage applications.
ISSN:2045-2322