Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing

The contribution of this paper is a comparison of the installation cost of a conventional drainage system consisting of a network of pits and pipes, with that of a hybrid drainage system comprising a network of pits and pipes, supported by allotment scale infiltration measures in a modern greenfield...

Full description

Bibliographic Details
Main Authors: Farjana Akhter, Guna A. Hewa, Faisal Ahammed, Baden Myers, John R. Argue
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/2/375
Description
Summary:The contribution of this paper is a comparison of the installation cost of a conventional drainage system consisting of a network of pits and pipes, with that of a hybrid drainage system comprising a network of pits and pipes, supported by allotment scale infiltration measures in a modern greenfield residential development. The case study site is located in Pipers Crest, near Strathalbyn, South Australia. This as-built site consists of 56 allotments, 42 pits (hence 42 sub-catchments), one detention basin and over 1000 m of drainage pipes. In this study, conventional and hybrid (combination of conventional and Water Sensitive Urban Design, WSUD systems) drainage systems were designed to convey minor storm events of 10% annual exceedance probability (AEP), and checked for major storm events of 5% AEP, using the DRAINS model and/or source control principles. The installation costs of the conventional and hybrid drainage systems were estimated and compared based upon cost estimates derived from Australian literature. The results of the study indicate that satisfactory drainage was possible using the conventional or hybrid system when the two systems were designed to have outflow not exceeding the pre-developed flow. The hybrid drainage system requires smaller pipe sizes compared to the conventional system. Also, the size of the detention basin and maximum outflow rate of the hybrid system were smaller than those for the conventionally drained site. The installation cost of the hybrid drainage system was 18% less than that of the conventional drainage system when the objective was to accommodate 10% and 5% AEP storms.
ISSN:2073-4441