Co-Dynamics of COVID-19 and Viral Hepatitis B Using a Mathematical Model of Non-Integer Order: Impact of Vaccination

The modeling of biological processes has increasingly been based on fractional calculus. In this paper, a novel fractional-order model is used to investigate the epidemiological impact of vaccination measures on the co-dynamics of viral hepatitis B and COVID-19. To investigate the existence and stab...

Full description

Bibliographic Details
Main Authors: Andrew Omame, Ifeoma P. Onyenegecha, Aeshah A. Raezah, Fathalla A. Rihan
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/7/544
Description
Summary:The modeling of biological processes has increasingly been based on fractional calculus. In this paper, a novel fractional-order model is used to investigate the epidemiological impact of vaccination measures on the co-dynamics of viral hepatitis B and COVID-19. To investigate the existence and stability of the new model, we use some fixed point theory results. The COVID-19 and viral hepatitis B thresholds are estimated using the model fitting. The vaccine parameters are plotted against transmission coefficients. The effect of non-integer derivatives on the solution paths for each epidemiological state and the trajectory diagram for infected classes are also examined numerically. An infection-free steady state and an infection-present equilibrium are achieved when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively. Similarly, phase portraits confirm the behaviour of the infected components, showing that, regardless of the order of the fractional derivative, the trajectories of the disease classes always converge toward infection-free steady states over time, no matter what initial conditions are assumed for the diseases. The model has been verified using real observations.
ISSN:2504-3110