Regge trajectories for the (2, 0) theories

Abstract We investigate the structure of conformal Regge trajectories for the maximally supersymmetric (2, 0) theories in six dimensions. The different conformal multiplets in a single superconformal multiplet must all have similarly-shaped Regge trajectories. We show that these super-descendant tra...

Full description

Bibliographic Details
Main Authors: Madalena Lemos, Balt C. van Rees, Xiang Zhao
Format: Article
Language:English
Published: SpringerOpen 2022-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2022)022
Description
Summary:Abstract We investigate the structure of conformal Regge trajectories for the maximally supersymmetric (2, 0) theories in six dimensions. The different conformal multiplets in a single superconformal multiplet must all have similarly-shaped Regge trajectories. We show that these super-descendant trajectories interact in interesting ways, leading to new constraints on their shape. For the four-point function of the stress tensor multiplet supersymmetry also softens the Regge behavior in some channels, and consequently we observe that ‘analyticity in spin’ holds for all spins greater than −3. All the physical operators in this correlator therefore lie on Regge trajectories and we describe an iterative scheme where the Lorentzian inversion formula can be used to bootstrap the four-point function. Some numerical experiments yield promising results, with OPE data approaching the numerical bootstrap results for all theories with rank greater than one.
ISSN:1029-8479