Hamiltonian Renormalization V: Free Vector Bosons

In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian Renormalization Group in order to employ it ultimately for canonical quantum gravity. The proposal was successfully tested for free scalar fields and thus a natural next step is to test it for free gauge theories....

Full description

Bibliographic Details
Main Authors: K. Liegener, T. Thiemann
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-01-01
Series:Frontiers in Astronomy and Space Sciences
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fspas.2020.547550/full
Description
Summary:In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian Renormalization Group in order to employ it ultimately for canonical quantum gravity. The proposal was successfully tested for free scalar fields and thus a natural next step is to test it for free gauge theories. This can be done in the framework of reduced phase space quantization which allows using techniques developed earlier for scalar field theories. In addition, in canonical quantum gravity one works in representations that support holonomy operators which are ill defined in the Fock representation of say Maxwell or Proca theory. Thus, we consider toy models that have both features, i.e. which employ Fock representations in which holonomy operators are well-defined. We adapt the coarse graining maps considered for scalar fields to those theories for free vector bosons. It turns out that the corresponding fixed pointed theories can be found analytically.
ISSN:2296-987X