A generalizable deep learning regression model for automated glaucoma screening from fundus images
Abstract A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. Th...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-06-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-023-00857-0 |
_version_ | 1797425797043060736 |
---|---|
author | Ruben Hemelings Bart Elen Alexander K. Schuster Matthew B. Blaschko João Barbosa-Breda Pekko Hujanen Annika Junglas Stefan Nickels Andrew White Norbert Pfeiffer Paul Mitchell Patrick De Boever Anja Tuulonen Ingeborg Stalmans |
author_facet | Ruben Hemelings Bart Elen Alexander K. Schuster Matthew B. Blaschko João Barbosa-Breda Pekko Hujanen Annika Junglas Stefan Nickels Andrew White Norbert Pfeiffer Paul Mitchell Patrick De Boever Anja Tuulonen Ingeborg Stalmans |
author_sort | Ruben Hemelings |
collection | DOAJ |
description | Abstract A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted. |
first_indexed | 2024-03-09T08:21:23Z |
format | Article |
id | doaj.art-186fb58fa7c147dca61e4bdcee0903bb |
institution | Directory Open Access Journal |
issn | 2398-6352 |
language | English |
last_indexed | 2024-03-09T08:21:23Z |
publishDate | 2023-06-01 |
publisher | Nature Portfolio |
record_format | Article |
series | npj Digital Medicine |
spelling | doaj.art-186fb58fa7c147dca61e4bdcee0903bb2023-12-02T21:44:56ZengNature Portfolionpj Digital Medicine2398-63522023-06-016111510.1038/s41746-023-00857-0A generalizable deep learning regression model for automated glaucoma screening from fundus imagesRuben Hemelings0Bart Elen1Alexander K. Schuster2Matthew B. Blaschko3João Barbosa-Breda4Pekko Hujanen5Annika Junglas6Stefan Nickels7Andrew White8Norbert Pfeiffer9Paul Mitchell10Patrick De Boever11Anja Tuulonen12Ingeborg Stalmans13Research Group Ophthalmology, Department of Neurosciences, KU LeuvenFlemish Institute for Technological Research (VITO)Department of Ophthalmology, University Medical Center MainzESAT-PSI, KU LeuvenResearch Group Ophthalmology, Department of Neurosciences, KU LeuvenTays Eye Centre, Tampere University HospitalDepartment of Ophthalmology, University Medical Center MainzDepartment of Ophthalmology, University Medical Center MainzDepartment of Ophthalmology, The University of SydneyDepartment of Ophthalmology, University Medical Center MainzDepartment of Ophthalmology, The University of SydneyCentre for Environmental Sciences, Hasselt University, Agoralaan building DTays Eye Centre, Tampere University HospitalResearch Group Ophthalmology, Department of Neurosciences, KU LeuvenAbstract A plethora of classification models for the detection of glaucoma from fundus images have been proposed in recent years. Often trained with data from a single glaucoma clinic, they report impressive performance on internal test sets, but tend to struggle in generalizing to external sets. This performance drop can be attributed to data shifts in glaucoma prevalence, fundus camera, and the definition of glaucoma ground truth. In this study, we confirm that a previously described regression network for glaucoma referral (G-RISK) obtains excellent results in a variety of challenging settings. Thirteen different data sources of labeled fundus images were utilized. The data sources include two large population cohorts (Australian Blue Mountains Eye Study, BMES and German Gutenberg Health Study, GHS) and 11 publicly available datasets (AIROGS, ORIGA, REFUGE1, LAG, ODIR, REFUGE2, GAMMA, RIM-ONEr3, RIM-ONE DL, ACRIMA, PAPILA). To minimize data shifts in input data, a standardized image processing strategy was developed to obtain 30° disc-centered images from the original data. A total of 149,455 images were included for model testing. Area under the receiver operating characteristic curve (AUC) for BMES and GHS population cohorts were at 0.976 [95% CI: 0.967–0.986] and 0.984 [95% CI: 0.980–0.991] on participant level, respectively. At a fixed specificity of 95%, sensitivities were at 87.3% and 90.3%, respectively, surpassing the minimum criteria of 85% sensitivity recommended by Prevent Blindness America. AUC values on the eleven publicly available data sets ranged from 0.854 to 0.988. These results confirm the excellent generalizability of a glaucoma risk regression model trained with homogeneous data from a single tertiary referral center. Further validation using prospective cohort studies is warranted.https://doi.org/10.1038/s41746-023-00857-0 |
spellingShingle | Ruben Hemelings Bart Elen Alexander K. Schuster Matthew B. Blaschko João Barbosa-Breda Pekko Hujanen Annika Junglas Stefan Nickels Andrew White Norbert Pfeiffer Paul Mitchell Patrick De Boever Anja Tuulonen Ingeborg Stalmans A generalizable deep learning regression model for automated glaucoma screening from fundus images npj Digital Medicine |
title | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_full | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_fullStr | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_full_unstemmed | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_short | A generalizable deep learning regression model for automated glaucoma screening from fundus images |
title_sort | generalizable deep learning regression model for automated glaucoma screening from fundus images |
url | https://doi.org/10.1038/s41746-023-00857-0 |
work_keys_str_mv | AT rubenhemelings ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT bartelen ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT alexanderkschuster ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT matthewbblaschko ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT joaobarbosabreda ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT pekkohujanen ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT annikajunglas ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT stefannickels ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT andrewwhite ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT norbertpfeiffer ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT paulmitchell ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT patrickdeboever ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT anjatuulonen ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT ingeborgstalmans ageneralizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT rubenhemelings generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT bartelen generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT alexanderkschuster generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT matthewbblaschko generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT joaobarbosabreda generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT pekkohujanen generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT annikajunglas generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT stefannickels generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT andrewwhite generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT norbertpfeiffer generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT paulmitchell generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT patrickdeboever generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT anjatuulonen generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages AT ingeborgstalmans generalizabledeeplearningregressionmodelforautomatedglaucomascreeningfromfundusimages |