Contact and almost contact structures on the real extension of the Lobachevsky plane
In this article, we propose a group model G of a real extension of the Lobachevsky plane H2 × R . The group G is a Lie group of special-form matrices and a subgroup of the general linear group GL(3, R). It is proved that, on the group model of the real extension of the Lobachevsky plane, there is a...
Main Authors: | V.I. Pan’zhenskii, A.O. Rastrepina |
---|---|
格式: | 文件 |
语言: | English |
出版: |
Kazan Federal University
2021-12-01
|
丛编: | Учёные записки Казанского университета: Серия Физико-математические науки |
主题: | |
在线阅读: | https://kpfu.ru/uz-eng-phm-2021-3-4-5.html |
相似书籍
-
The left-invariant contact metric structure on the Sol manifold
由: V.I. Pan’zhenskii, et al.
出版: (2020-03-01) -
A note about almost contact metric hypersurfaces axioms for almost Hermitian manifolds
由: A. Abu-Saleem, et al.
出版: (2024-01-01) -
Vector cross products and almost contact structures
由: Paola Matzeu, et al.
出版: (2002-01-01) -
$K$-contact generalized square Finsler manifolds
由: Hannaneh Faraji, et al.
出版: (2024-10-01) -
(Almost) Ricci Solitons in Lorentzian–Sasakian Hom-Lie Groups
由: Esmaeil Peyghan, et al.
出版: (2024-10-01)