A Note on the Topological Group <i>c</i><sub>0</sub>

A well-known result of Ferri and Galindo asserts that the topological group <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is not reflex...

Full description

Bibliographic Details
Main Author: Michael Megrelishvili
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/7/4/77
_version_ 1819080097865400320
author Michael Megrelishvili
author_facet Michael Megrelishvili
author_sort Michael Megrelishvili
collection DOAJ
description A well-known result of Ferri and Galindo asserts that the topological group <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is not reflexively representable and the algebra WAP<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of weakly almost periodic functions does not separate points and closed subsets. However, it is unknown if the same remains true for a larger important algebra Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of tame functions. Respectively, it is an open question if <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is representable on a Rosenthal Banach space. In the present work we show that Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is small in a sense that the unit sphere <i>S</i> and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> cannot be separated by a tame function <i>f</i> &#8712; Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. As an application we show that the Gromov&#8217;s compactification of <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is not a semigroup compactification. We discuss some questions.
first_indexed 2024-12-21T19:39:28Z
format Article
id doaj.art-18808a22d1e74ac193881a9c6eafc4ee
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-21T19:39:28Z
publishDate 2018-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-18808a22d1e74ac193881a9c6eafc4ee2022-12-21T18:52:30ZengMDPI AGAxioms2075-16802018-10-01747710.3390/axioms7040077axioms7040077A Note on the Topological Group <i>c</i><sub>0</sub>Michael Megrelishvili0Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, IsraelA well-known result of Ferri and Galindo asserts that the topological group <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is not reflexively representable and the algebra WAP<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of weakly almost periodic functions does not separate points and closed subsets. However, it is unknown if the same remains true for a larger important algebra Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of tame functions. Respectively, it is an open question if <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is representable on a Rosenthal Banach space. In the present work we show that Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is small in a sense that the unit sphere <i>S</i> and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>S</mi> </mrow> </semantics> </math> </inline-formula> cannot be separated by a tame function <i>f</i> &#8712; Tame<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. As an application we show that the Gromov&#8217;s compactification of <inline-formula> <math display="inline"> <semantics> <msub> <mi>c</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> is not a semigroup compactification. We discuss some questions.https://www.mdpi.com/2075-1680/7/4/77Gromov’s compactificationgroup representationmatrix coefficientsemigroup compactificationtame function
spellingShingle Michael Megrelishvili
A Note on the Topological Group <i>c</i><sub>0</sub>
Axioms
Gromov’s compactification
group representation
matrix coefficient
semigroup compactification
tame function
title A Note on the Topological Group <i>c</i><sub>0</sub>
title_full A Note on the Topological Group <i>c</i><sub>0</sub>
title_fullStr A Note on the Topological Group <i>c</i><sub>0</sub>
title_full_unstemmed A Note on the Topological Group <i>c</i><sub>0</sub>
title_short A Note on the Topological Group <i>c</i><sub>0</sub>
title_sort note on the topological group i c i sub 0 sub
topic Gromov’s compactification
group representation
matrix coefficient
semigroup compactification
tame function
url https://www.mdpi.com/2075-1680/7/4/77
work_keys_str_mv AT michaelmegrelishvili anoteonthetopologicalgroupicisub0sub
AT michaelmegrelishvili noteonthetopologicalgroupicisub0sub