Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable

Closed-form expressions for the expected logarithm and for arbitrary negative integer moments of a noncentral <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-...

Full description

Bibliographic Details
Main Author: Stefan M. Moser
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/9/1048
_version_ 1797553221083856896
author Stefan M. Moser
author_facet Stefan M. Moser
author_sort Stefan M. Moser
collection DOAJ
description Closed-form expressions for the expected logarithm and for arbitrary negative integer moments of a noncentral <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-formula>-distributed random variable are presented in the cases of both even and odd degrees of freedom. Moreover, some basic properties of these expectations are derived and tight upper and lower bounds on them are proposed.
first_indexed 2024-03-10T16:12:17Z
format Article
id doaj.art-1886f531418d4beaa2b2243129397b99
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T16:12:17Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-1886f531418d4beaa2b2243129397b992023-11-20T14:18:37ZengMDPI AGEntropy1099-43002020-09-01229104810.3390/e22091048Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random VariableStefan M. Moser0Signal and Information Processing Lab, ETH Zürich, 8092 Zürich, SwitzerlandClosed-form expressions for the expected logarithm and for arbitrary negative integer moments of a noncentral <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-formula>-distributed random variable are presented in the cases of both even and odd degrees of freedom. Moreover, some basic properties of these expectations are derived and tight upper and lower bounds on them are proposed.https://www.mdpi.com/1099-4300/22/9/1048central <i>χ</i><sup>2</sup> distributionchi-square distributionexpected logarithmexponential distributionnegative integer momentsnoncentral <i>χ</i><sup>2</sup> distribution
spellingShingle Stefan M. Moser
Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
Entropy
central <i>χ</i><sup>2</sup> distribution
chi-square distribution
expected logarithm
exponential distribution
negative integer moments
noncentral <i>χ</i><sup>2</sup> distribution
title Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
title_full Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
title_fullStr Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
title_full_unstemmed Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
title_short Expected Logarithm and Negative Integer Moments of a Noncentral <em>χ</em><sup>2</sup>-Distributed Random Variable
title_sort expected logarithm and negative integer moments of a noncentral em χ em sup 2 sup distributed random variable
topic central <i>χ</i><sup>2</sup> distribution
chi-square distribution
expected logarithm
exponential distribution
negative integer moments
noncentral <i>χ</i><sup>2</sup> distribution
url https://www.mdpi.com/1099-4300/22/9/1048
work_keys_str_mv AT stefanmmoser expectedlogarithmandnegativeintegermomentsofanoncentralemchemsup2supdistributedrandomvariable