Swept coded aperture real-time femtophotography

Abstract Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelect...

Full description

Bibliographic Details
Main Authors: Jingdan Liu, Miguel Marquez, Yingming Lai, Heide Ibrahim, Katherine Légaré, Philippe Lassonde, Xianglei Liu, Michel Hehn, Stéphane Mangin, Grégory Malinowski, Zhengyan Li, François Légaré, Jinyang Liang
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-45820-z
Description
Summary:Abstract Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices and face challenges in the application scope and acquisition accuracy. They are also hindered by the limitations in the acquirable information imposed by the sensing models. Here, we overcome these challenges by developing swept coded aperture real-time femtophotography (SCARF). This computational imaging modality enables all-optical ultrafast sweeping of a static coded aperture during the recording of an ultrafast event, bringing full-sequence encoding of up to 156.3 THz to every pixel on a CCD camera. We demonstrate SCARF’s single-shot ultrafast imaging ability at tunable frame rates and spatial scales in both reflection and transmission modes. Using SCARF, we image ultrafast absorption in a semiconductor and ultrafast demagnetization of a metal alloy.
ISSN:2041-1723