Asymptotic behaviour of solutions of some differential equations with an unbounded delay

We investigate the asymptotic properties of all solutions of the functional differential equation $$\dot{x}(t)=p(t)[x(t)-kx(t-\tau (t))]+q(t),\qquad t\in I=[t_0,\infty),$$ where $k\ne 0$ is a scalar and $\tau (t)$ is an unbounded delay. Under certain restrictions we relate asymptotic behaviour of s...

Full description

Bibliographic Details
Main Author: Jan Čermák
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=31
Description
Summary:We investigate the asymptotic properties of all solutions of the functional differential equation $$\dot{x}(t)=p(t)[x(t)-kx(t-\tau (t))]+q(t),\qquad t\in I=[t_0,\infty),$$ where $k\ne 0$ is a scalar and $\tau (t)$ is an unbounded delay. Under certain restrictions we relate asymptotic behaviour of solutions $x(t)$ of this equation to the behaviour of a solution $\varphi (t)$ of the auxiliary functional nondifferential equation $$\varphi (t)=|k|\,\varphi (t-\tau (t)),\qquad t\in I.$$
ISSN:1417-3875