A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control

Sweet bell peppers are a Solanaceous fruit belonging to the <i>Capsicum annuum</i> L. species whose consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes and the absence of spicy flavor. In additio...

Full description

Bibliographic Details
Main Authors: Marcos-Jesús Villaseñor-Aguilar, Micael-Gerardo Bravo-Sánchez, José-Alfredo Padilla-Medina, Jorge Luis Vázquez-Vera, Ramón-Gerardo Guevara-González, Francisco-Javier García-Rodríguez, Alejandro-Israel Barranco-Gutiérrez
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/15/5097
_version_ 1797561418640261120
author Marcos-Jesús Villaseñor-Aguilar
Micael-Gerardo Bravo-Sánchez
José-Alfredo Padilla-Medina
Jorge Luis Vázquez-Vera
Ramón-Gerardo Guevara-González
Francisco-Javier García-Rodríguez
Alejandro-Israel Barranco-Gutiérrez
author_facet Marcos-Jesús Villaseñor-Aguilar
Micael-Gerardo Bravo-Sánchez
José-Alfredo Padilla-Medina
Jorge Luis Vázquez-Vera
Ramón-Gerardo Guevara-González
Francisco-Javier García-Rodríguez
Alejandro-Israel Barranco-Gutiérrez
author_sort Marcos-Jesús Villaseñor-Aguilar
collection DOAJ
description Sweet bell peppers are a Solanaceous fruit belonging to the <i>Capsicum annuum</i> L. species whose consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes and the absence of spicy flavor. In addition, these fruits have a characteristic flavor and nutritional attributes that include ascorbic acid, polyphenols, and carotenoids. A quality criterion for the harvest of this fruit is maturity; this attribute is visually determined by the consumer when verifying the color of the fruit’s pericarp. The present work proposes an artificial vision system that automatically describes ripeness levels of the bell pepper and compares the Fuzzy logic (FL) and Neuronal Networks for the classification stage. In this investigation, maturity stages of bell peppers were referenced by measuring total soluble solids (TSS), ° Brix, using refractometry. The proposed method was integrated in four stages. The first one consists in the image acquisition of five views using the Raspberry Pi 5 Megapixel camera. The second one is the segmentation of acquired image samples, where background and noise are removed from each image. The third phase is the segmentation of the regions of interest (green, yellow, orange and red) using the connect components algorithm to select areas. The last phase is the classification, which outputs the maturity stage. The classificatory was designed using Matlab’s Fuzzy Logic Toolbox and Deep Learning Toolbox. Its implementation was carried out onto Raspberry Pi platform. It tested the maturity classifier models using neural networks (RBF-ANN) and fuzzy logic models (ANFIS) with an accuracy of 100% and 88%, respectively. Finally, it was constructed with a content of ° Brix prediction model with small improvements regarding the state of art.
first_indexed 2024-03-10T18:13:41Z
format Article
id doaj.art-189c34deec49464dac9089dbc1f33bce
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T18:13:41Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-189c34deec49464dac9089dbc1f33bce2023-11-20T07:50:44ZengMDPI AGApplied Sciences2076-34172020-07-011015509710.3390/app10155097A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality ControlMarcos-Jesús Villaseñor-Aguilar0Micael-Gerardo Bravo-Sánchez1José-Alfredo Padilla-Medina2Jorge Luis Vázquez-Vera3Ramón-Gerardo Guevara-González4Francisco-Javier García-Rodríguez5Alejandro-Israel Barranco-Gutiérrez6Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoDoctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoDoctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoDoctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoGrupo de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Faculta de Ingeniería, Universidad Autónoma de Querétaro, El Marques 76265, MexicoDoctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoDoctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya 38010, MexicoSweet bell peppers are a Solanaceous fruit belonging to the <i>Capsicum annuum</i> L. species whose consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes and the absence of spicy flavor. In addition, these fruits have a characteristic flavor and nutritional attributes that include ascorbic acid, polyphenols, and carotenoids. A quality criterion for the harvest of this fruit is maturity; this attribute is visually determined by the consumer when verifying the color of the fruit’s pericarp. The present work proposes an artificial vision system that automatically describes ripeness levels of the bell pepper and compares the Fuzzy logic (FL) and Neuronal Networks for the classification stage. In this investigation, maturity stages of bell peppers were referenced by measuring total soluble solids (TSS), ° Brix, using refractometry. The proposed method was integrated in four stages. The first one consists in the image acquisition of five views using the Raspberry Pi 5 Megapixel camera. The second one is the segmentation of acquired image samples, where background and noise are removed from each image. The third phase is the segmentation of the regions of interest (green, yellow, orange and red) using the connect components algorithm to select areas. The last phase is the classification, which outputs the maturity stage. The classificatory was designed using Matlab’s Fuzzy Logic Toolbox and Deep Learning Toolbox. Its implementation was carried out onto Raspberry Pi platform. It tested the maturity classifier models using neural networks (RBF-ANN) and fuzzy logic models (ANFIS) with an accuracy of 100% and 88%, respectively. Finally, it was constructed with a content of ° Brix prediction model with small improvements regarding the state of art.https://www.mdpi.com/2076-3417/10/15/5097bell peppermaturityfuzzy logiccomputational vision
spellingShingle Marcos-Jesús Villaseñor-Aguilar
Micael-Gerardo Bravo-Sánchez
José-Alfredo Padilla-Medina
Jorge Luis Vázquez-Vera
Ramón-Gerardo Guevara-González
Francisco-Javier García-Rodríguez
Alejandro-Israel Barranco-Gutiérrez
A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
Applied Sciences
bell pepper
maturity
fuzzy logic
computational vision
title A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
title_full A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
title_fullStr A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
title_full_unstemmed A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
title_short A Maturity Estimation of Bell Pepper (<i>Capsicum annuum</i> L.) by Artificial Vision System for Quality Control
title_sort maturity estimation of bell pepper i capsicum annuum i l by artificial vision system for quality control
topic bell pepper
maturity
fuzzy logic
computational vision
url https://www.mdpi.com/2076-3417/10/15/5097
work_keys_str_mv AT marcosjesusvillasenoraguilar amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT micaelgerardobravosanchez amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT josealfredopadillamedina amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT jorgeluisvazquezvera amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT ramongerardoguevaragonzalez amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT franciscojaviergarciarodriguez amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT alejandroisraelbarrancogutierrez amaturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT marcosjesusvillasenoraguilar maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT micaelgerardobravosanchez maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT josealfredopadillamedina maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT jorgeluisvazquezvera maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT ramongerardoguevaragonzalez maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT franciscojaviergarciarodriguez maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol
AT alejandroisraelbarrancogutierrez maturityestimationofbellpeppericapsicumannuumilbyartificialvisionsystemforqualitycontrol