Transparent Polyurethane Nanofiber Air Filter for High-Efficiency PM2.5 Capture
Abstract Fine particulate matter (PM) has seriously affected human life, such as affecting human health, climate, and ecological environment. Recently, many researchers use electrospinning to prepare nanofiber air filters for effective removal of fine particle matter. However, electrospinning of the...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-12-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1186/s11671-019-3199-0 |
Summary: | Abstract Fine particulate matter (PM) has seriously affected human life, such as affecting human health, climate, and ecological environment. Recently, many researchers use electrospinning to prepare nanofiber air filters for effective removal of fine particle matter. However, electrospinning of the polymer fibers onto the window screen uniformly is only achieved in the laboratory, and the realization of industrialization is still very challenging. Here, we report an electrospinning method using a rotating bead spinneret for large-scale electrospinning of thermoplastic polyurethane (TPU) onto conductive mesh with high productivity of 1000 m2/day. By changing the concentration of TPU in the polymer solution, PM2.5 removal efficiency of nanofiber-based air filter can be up to 99.654% with good optical transparency of 60%, and the contact angle and the ventilation rate of the nanofiber-based air filter is 128.5° and 3480 mm/s, respectively. After 10 times of filtration, the removal efficiency is only reduced by 1.6%. This transparent air filter based on TPU nanofibers has excellent filtration efficiency and ventilation rate, which can effectively ensure indoor air quality of the residential buildings. |
---|---|
ISSN: | 1931-7573 1556-276X |