On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras
In this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-Akivis superalgebra associated to a given Hom...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2021-11-01
|
Series: | Discussiones Mathematicae - General Algebra and Applications |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgaa.1361 |
_version_ | 1797759774279860224 |
---|---|
author | Attan Sylvain Gaparayi Donatien Issa A. Nourou |
author_facet | Attan Sylvain Gaparayi Donatien Issa A. Nourou |
author_sort | Attan Sylvain |
collection | DOAJ |
description | In this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-Akivis superalgebra associated to a given Hom-Leibniz superalgebra, it is observed that the Hom-super Akivis identity leads to an additional property of Hom-Leibniz superalgebras, which in turn gives a necessary and sufficient condition for Hom-super Lie admissibility of Hom-Leibniz superalgebras. We also show that every (left) Hom-Leibniz superalgebra has a natural super Hom-Lie-Yamaguti structure. |
first_indexed | 2024-03-12T18:49:17Z |
format | Article |
id | doaj.art-18b14fe9f0f54d37b295692d7ce5cda9 |
institution | Directory Open Access Journal |
issn | 2084-0373 |
language | English |
last_indexed | 2024-03-12T18:49:17Z |
publishDate | 2021-11-01 |
publisher | University of Zielona Góra |
record_format | Article |
series | Discussiones Mathematicae - General Algebra and Applications |
spelling | doaj.art-18b14fe9f0f54d37b295692d7ce5cda92023-08-02T07:18:31ZengUniversity of Zielona GóraDiscussiones Mathematicae - General Algebra and Applications2084-03732021-11-0141224926410.7151/dmgaa.1361On Hom-Leibniz and Hom-Lie-Yamaguti SuperalgebrasAttan Sylvain0Gaparayi Donatien1Issa A. Nourou2Département de Mathématiques, Université d’Abomey-calavi, 01 BP 4521, Cotonou 01, BéninEcole Normale Supérieure (E.N.S), BP 6983 Bujumbura, BurundiDépartement de Mathématiques, Université d’Abomey-calavi, 01 BP 4521, Cotonou 01, BéninIn this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-Akivis superalgebra associated to a given Hom-Leibniz superalgebra, it is observed that the Hom-super Akivis identity leads to an additional property of Hom-Leibniz superalgebras, which in turn gives a necessary and sufficient condition for Hom-super Lie admissibility of Hom-Leibniz superalgebras. We also show that every (left) Hom-Leibniz superalgebra has a natural super Hom-Lie-Yamaguti structure.https://doi.org/10.7151/dmgaa.1361hom-leibniz superalgebrashom-akivis superalgebrashom-lie-yamaguti superalgebras17a3017a3217d99 |
spellingShingle | Attan Sylvain Gaparayi Donatien Issa A. Nourou On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras Discussiones Mathematicae - General Algebra and Applications hom-leibniz superalgebras hom-akivis superalgebras hom-lie-yamaguti superalgebras 17a30 17a32 17d99 |
title | On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras |
title_full | On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras |
title_fullStr | On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras |
title_full_unstemmed | On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras |
title_short | On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras |
title_sort | on hom leibniz and hom lie yamaguti superalgebras |
topic | hom-leibniz superalgebras hom-akivis superalgebras hom-lie-yamaguti superalgebras 17a30 17a32 17d99 |
url | https://doi.org/10.7151/dmgaa.1361 |
work_keys_str_mv | AT attansylvain onhomleibnizandhomlieyamagutisuperalgebras AT gaparayidonatien onhomleibnizandhomlieyamagutisuperalgebras AT issaanourou onhomleibnizandhomlieyamagutisuperalgebras |