Summary: | The creep response of the 17-4PH precipitation hardening steel produced by a new additive manufacturing technology (Bound Metal Deposition) was investigated at 482 °C (900 °F), under stresses ranging from 350 to 600 MPa. Two different sets of samples produced with different deposition parameters were considered. Prior heat treatment consisted of ageing either at 482 °C (state H900) or at 621 °C (H1150). The minimum creep rate and time to rupture dependencies on applied stress were obtained. The creep response in terms of time to rupture under a given stress, in particular, was compared with the only other available literature dataset on a similar steel processed by traditional technologies. The analysis of the experiments demonstrated that the presence of dispersed defects causes, in the Bound Metal Deposited steel, a substantial reduction (35–40%) of the creep strength.
|