Degradation mechanisms of perovskite light-emitting diodes under electrical bias
Metal-halide perovskite light-emitting diodes (PeLEDs) are considered as new-generation highly efficient luminescent materials for application in displays and solid-state lighting. Since the first successful demonstration of PeLEDs in 2014, the research on the development of efficient PeLEDs has pro...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2022-11-01
|
Series: | Nanophotonics |
Subjects: | |
Online Access: | https://doi.org/10.1515/nanoph-2022-0569 |
_version_ | 1826963943728349184 |
---|---|
author | Zheng Dong Guang Kim Dong Ha |
author_facet | Zheng Dong Guang Kim Dong Ha |
author_sort | Zheng Dong Guang |
collection | DOAJ |
description | Metal-halide perovskite light-emitting diodes (PeLEDs) are considered as new-generation highly efficient luminescent materials for application in displays and solid-state lighting. Since the first successful demonstration of PeLEDs in 2014, the research on the development of efficient PeLEDs has progressed significantly. Although the device efficiency has significantly improved over a short period of time, their overall performance has not yet reached the levels of mature technologies for practical applications. Various degradation processes are the major impediment to improving the performance and stability of PeLED devices. In this review, we discuss various analysis techniques that are necessary to gain insights into the effects of various degradation mechanisms on the performance and stability of PeLEDs. Based on the causes and effects of external and internal factors, the degradation processes and associated mechanisms are examined in terms of critical physical and chemical parameters. Further, according to the progress of the current research, the challenges faced in studying degradation mechanisms are also elucidated. Given the universality of the degradation behavior, an in-depth understanding of the device degradation may promote the development of optimization strategies and further improve the performance and stability of PeLEDs. |
first_indexed | 2024-03-13T01:44:22Z |
format | Article |
id | doaj.art-18dd4a13a99947dcaeac52ebee558f0f |
institution | Directory Open Access Journal |
issn | 2192-8606 2192-8614 |
language | English |
last_indexed | 2025-02-18T02:48:11Z |
publishDate | 2022-11-01 |
publisher | De Gruyter |
record_format | Article |
series | Nanophotonics |
spelling | doaj.art-18dd4a13a99947dcaeac52ebee558f0f2024-11-25T11:19:08ZengDe GruyterNanophotonics2192-86062192-86142022-11-0112345147610.1515/nanoph-2022-0569Degradation mechanisms of perovskite light-emitting diodes under electrical biasZheng Dong Guang0Kim Dong Ha1Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul03760, KoreaDepartment of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul03760, KoreaMetal-halide perovskite light-emitting diodes (PeLEDs) are considered as new-generation highly efficient luminescent materials for application in displays and solid-state lighting. Since the first successful demonstration of PeLEDs in 2014, the research on the development of efficient PeLEDs has progressed significantly. Although the device efficiency has significantly improved over a short period of time, their overall performance has not yet reached the levels of mature technologies for practical applications. Various degradation processes are the major impediment to improving the performance and stability of PeLED devices. In this review, we discuss various analysis techniques that are necessary to gain insights into the effects of various degradation mechanisms on the performance and stability of PeLEDs. Based on the causes and effects of external and internal factors, the degradation processes and associated mechanisms are examined in terms of critical physical and chemical parameters. Further, according to the progress of the current research, the challenges faced in studying degradation mechanisms are also elucidated. Given the universality of the degradation behavior, an in-depth understanding of the device degradation may promote the development of optimization strategies and further improve the performance and stability of PeLEDs.https://doi.org/10.1515/nanoph-2022-0569degradation mechanismsdevice structurelight-emitting diodesperovskites |
spellingShingle | Zheng Dong Guang Kim Dong Ha Degradation mechanisms of perovskite light-emitting diodes under electrical bias Nanophotonics degradation mechanisms device structure light-emitting diodes perovskites |
title | Degradation mechanisms of perovskite light-emitting diodes under electrical bias |
title_full | Degradation mechanisms of perovskite light-emitting diodes under electrical bias |
title_fullStr | Degradation mechanisms of perovskite light-emitting diodes under electrical bias |
title_full_unstemmed | Degradation mechanisms of perovskite light-emitting diodes under electrical bias |
title_short | Degradation mechanisms of perovskite light-emitting diodes under electrical bias |
title_sort | degradation mechanisms of perovskite light emitting diodes under electrical bias |
topic | degradation mechanisms device structure light-emitting diodes perovskites |
url | https://doi.org/10.1515/nanoph-2022-0569 |
work_keys_str_mv | AT zhengdongguang degradationmechanismsofperovskitelightemittingdiodesunderelectricalbias AT kimdongha degradationmechanismsofperovskitelightemittingdiodesunderelectricalbias |