Investigating cyclist interaction behavior through a controlled laboratory experiment

Nowadays, there is a need for tools to support city planners in assessing the performance of cycling infrastructure and managing bicycles and mixed flows. Microscopic and macroscopic bicycle traffic models can be used to fulfill this need. However, fundamental knowledge on individual cyclist interac...

Full description

Bibliographic Details
Main Authors: Yufei Yuan, Winnie Daamen, Bernat Goñi-Ros, Serge Hoogendoorn
Format: Article
Language:English
Published: University of Minnesota 2018-10-01
Series:Journal of Transport and Land Use
Online Access:https://www.jtlu.org/index.php/jtlu/article/view/1155
_version_ 1831670909894656000
author Yufei Yuan
Winnie Daamen
Bernat Goñi-Ros
Serge Hoogendoorn
author_facet Yufei Yuan
Winnie Daamen
Bernat Goñi-Ros
Serge Hoogendoorn
author_sort Yufei Yuan
collection DOAJ
description Nowadays, there is a need for tools to support city planners in assessing the performance of cycling infrastructure and managing bicycles and mixed flows. Microscopic and macroscopic bicycle traffic models can be used to fulfill this need. However, fundamental knowledge on individual cyclist interaction behavior (which should underpin these models) is hardly available in literature. Detailed bicycle traffic data are necessary if we want to gain insight into cyclist interaction behavior and develop sound behavioral theories and models. Laboratory experiments have been proven to be one of the most effective ways to collect detailed traffic data. For this reason, a controlled experiment aimed to investigate cyclist interaction behavior has been carried out at Delft University of Technology. This paper describes the experimental design, the resulting microscopic bicycle trajectories, and some preliminary results regarding one of the most common interaction situations: the bidirectional interaction. The preliminary results reveal how and to what extent cyclists interact in bidirectional cycling. It is found that cyclists perform a clearly-visible evading (collision avoidance) maneuver when they have face-to-face encounters. During these maneuvers, changes in speed and displacements in the lateral direction are observed. Cyclists start to deviate from their original path when they are around 30 m from each other, and they strongly prefer passing on the right-hand side. Moreover, the expectation of gender differences in cycling behavior reported in the literature is confirmed: our results show that women generally cycle more slowly than men and deviate more from their intended paths in face-to-face encounters. More observations will be available in the next stage of data analysis. These findings can be used to formulate improved microscopic bicycle traffic models for infrastructure design and policy development.
first_indexed 2024-12-19T23:25:14Z
format Article
id doaj.art-18ffbebdcefc422585d9347df6727e27
institution Directory Open Access Journal
issn 1938-7849
language English
last_indexed 2024-12-19T23:25:14Z
publishDate 2018-10-01
publisher University of Minnesota
record_format Article
series Journal of Transport and Land Use
spelling doaj.art-18ffbebdcefc422585d9347df6727e272022-12-21T20:01:52ZengUniversity of MinnesotaJournal of Transport and Land Use1938-78492018-10-0111110.5198/jtlu.2018.1155Investigating cyclist interaction behavior through a controlled laboratory experimentYufei Yuan0Winnie Daamen1Bernat Goñi-Ros2Serge Hoogendoorn3Delft University of TechnologyDelft University of TechnologyDelft University of TechnologyDelft University of TechnologyNowadays, there is a need for tools to support city planners in assessing the performance of cycling infrastructure and managing bicycles and mixed flows. Microscopic and macroscopic bicycle traffic models can be used to fulfill this need. However, fundamental knowledge on individual cyclist interaction behavior (which should underpin these models) is hardly available in literature. Detailed bicycle traffic data are necessary if we want to gain insight into cyclist interaction behavior and develop sound behavioral theories and models. Laboratory experiments have been proven to be one of the most effective ways to collect detailed traffic data. For this reason, a controlled experiment aimed to investigate cyclist interaction behavior has been carried out at Delft University of Technology. This paper describes the experimental design, the resulting microscopic bicycle trajectories, and some preliminary results regarding one of the most common interaction situations: the bidirectional interaction. The preliminary results reveal how and to what extent cyclists interact in bidirectional cycling. It is found that cyclists perform a clearly-visible evading (collision avoidance) maneuver when they have face-to-face encounters. During these maneuvers, changes in speed and displacements in the lateral direction are observed. Cyclists start to deviate from their original path when they are around 30 m from each other, and they strongly prefer passing on the right-hand side. Moreover, the expectation of gender differences in cycling behavior reported in the literature is confirmed: our results show that women generally cycle more slowly than men and deviate more from their intended paths in face-to-face encounters. More observations will be available in the next stage of data analysis. These findings can be used to formulate improved microscopic bicycle traffic models for infrastructure design and policy development.https://www.jtlu.org/index.php/jtlu/article/view/1155
spellingShingle Yufei Yuan
Winnie Daamen
Bernat Goñi-Ros
Serge Hoogendoorn
Investigating cyclist interaction behavior through a controlled laboratory experiment
Journal of Transport and Land Use
title Investigating cyclist interaction behavior through a controlled laboratory experiment
title_full Investigating cyclist interaction behavior through a controlled laboratory experiment
title_fullStr Investigating cyclist interaction behavior through a controlled laboratory experiment
title_full_unstemmed Investigating cyclist interaction behavior through a controlled laboratory experiment
title_short Investigating cyclist interaction behavior through a controlled laboratory experiment
title_sort investigating cyclist interaction behavior through a controlled laboratory experiment
url https://www.jtlu.org/index.php/jtlu/article/view/1155
work_keys_str_mv AT yufeiyuan investigatingcyclistinteractionbehaviorthroughacontrolledlaboratoryexperiment
AT winniedaamen investigatingcyclistinteractionbehaviorthroughacontrolledlaboratoryexperiment
AT bernatgoniros investigatingcyclistinteractionbehaviorthroughacontrolledlaboratoryexperiment
AT sergehoogendoorn investigatingcyclistinteractionbehaviorthroughacontrolledlaboratoryexperiment