Intelligent robot chair with communication aid using TEP responses and higher order spectra band features
In recent years, electroencephalography-based navigation and communication systems for differentially enabled communities have been progressively receiving more attention. To provide a navigation system with a communication aid, a customized protocol using thought evoked potentials has been proposed...
Main Authors: | , , , |
---|---|
Format: | Article |
Sprog: | Russian |
Udgivet: |
National Academy of Sciences of Belarus, the United Institute of Informatics Problems
2021-01-01
|
Serier: | Informatika |
Fag: | |
Online adgang: | https://inf.grid.by/jour/article/view/1076 |
_version_ | 1826546777201836032 |
---|---|
author | Sathees Kumar Nataraj Paulraj Murugesa Pandiyan Sazali Bin Yaacob Abdul Hamid bin Adom |
author_facet | Sathees Kumar Nataraj Paulraj Murugesa Pandiyan Sazali Bin Yaacob Abdul Hamid bin Adom |
author_sort | Sathees Kumar Nataraj |
collection | DOAJ |
description | In recent years, electroencephalography-based navigation and communication systems for differentially enabled communities have been progressively receiving more attention. To provide a navigation system with a communication aid, a customized protocol using thought evoked potentials has been proposed in this research work to aid the differentially enabled communities. This study presents the higher order spectra based features to categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for navigating a robot chair and also for communications using an oddball paradigm. The proposed system records the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2. The frequency band signals are segmented into frame samples of equal length and are used to extract the features using bispectrum estimation. Further, statistical features such as the average value of bispectral magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum classification accuracy of 68.52 %. |
first_indexed | 2024-04-10T02:13:39Z |
format | Article |
id | doaj.art-19071a92ef924efda0d132d33f901b59 |
institution | Directory Open Access Journal |
issn | 1816-0301 |
language | Russian |
last_indexed | 2025-03-14T05:39:09Z |
publishDate | 2021-01-01 |
publisher | National Academy of Sciences of Belarus, the United Institute of Informatics Problems |
record_format | Article |
series | Informatika |
spelling | doaj.art-19071a92ef924efda0d132d33f901b592025-03-05T13:56:47ZrusNational Academy of Sciences of Belarus, the United Institute of Informatics ProblemsInformatika1816-03012021-01-011749210310.37661/1816-0301-2020-17-4-92-103943Intelligent robot chair with communication aid using TEP responses and higher order spectra band featuresSathees Kumar Nataraj0Paulraj Murugesa Pandiyan1Sazali Bin Yaacob2Abdul Hamid bin Adom3AMA International Univerisity BahrainSri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, IndiaUniversiti Kuala Lumpur Malaysian Spanish InstituteSchool of Mechatronics Engineering, Universiti Malaysia PerlisIn recent years, electroencephalography-based navigation and communication systems for differentially enabled communities have been progressively receiving more attention. To provide a navigation system with a communication aid, a customized protocol using thought evoked potentials has been proposed in this research work to aid the differentially enabled communities. This study presents the higher order spectra based features to categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for navigating a robot chair and also for communications using an oddball paradigm. The proposed system records the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2. The frequency band signals are segmented into frame samples of equal length and are used to extract the features using bispectrum estimation. Further, statistical features such as the average value of bispectral magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum classification accuracy of 68.52 %.https://inf.grid.by/jour/article/view/1076intelligent robot chair with communication aidthought evoked potentialsbispectrum estimation (b (f1f2))multilayer neural network |
spellingShingle | Sathees Kumar Nataraj Paulraj Murugesa Pandiyan Sazali Bin Yaacob Abdul Hamid bin Adom Intelligent robot chair with communication aid using TEP responses and higher order spectra band features Informatika intelligent robot chair with communication aid thought evoked potentials bispectrum estimation (b (f1 f2)) multilayer neural network |
title | Intelligent robot chair with communication aid using TEP responses and higher order spectra band features |
title_full | Intelligent robot chair with communication aid using TEP responses and higher order spectra band features |
title_fullStr | Intelligent robot chair with communication aid using TEP responses and higher order spectra band features |
title_full_unstemmed | Intelligent robot chair with communication aid using TEP responses and higher order spectra band features |
title_short | Intelligent robot chair with communication aid using TEP responses and higher order spectra band features |
title_sort | intelligent robot chair with communication aid using tep responses and higher order spectra band features |
topic | intelligent robot chair with communication aid thought evoked potentials bispectrum estimation (b (f1 f2)) multilayer neural network |
url | https://inf.grid.by/jour/article/view/1076 |
work_keys_str_mv | AT satheeskumarnataraj intelligentrobotchairwithcommunicationaidusingtepresponsesandhigherorderspectrabandfeatures AT paulrajmurugesapandiyan intelligentrobotchairwithcommunicationaidusingtepresponsesandhigherorderspectrabandfeatures AT sazalibinyaacob intelligentrobotchairwithcommunicationaidusingtepresponsesandhigherorderspectrabandfeatures AT abdulhamidbinadom intelligentrobotchairwithcommunicationaidusingtepresponsesandhigherorderspectrabandfeatures |