Prime ideal graphs of commutative rings

<p style="text-align: justify;">Let <em>R</em> be a finite commutative ring with identity and <em>P</em> be a prime ideal of <em>R</em>. The vertex set is <em>R - </em>{0} and two distinct vertices are adjacent if their product in <e...

Full description

Bibliographic Details
Main Authors: Haval Mohammed Salih, Asaad A. Jund
Format: Article
Language:English
Published: InaCombS; Universitas Jember; dan Universitas Indonesia 2022-06-01
Series:Indonesian Journal of Combinatorics
Subjects:
Online Access:http://www.ijc.or.id/index.php/ijc/article/view/156
_version_ 1797946207914426368
author Haval Mohammed Salih
Asaad A. Jund
author_facet Haval Mohammed Salih
Asaad A. Jund
author_sort Haval Mohammed Salih
collection DOAJ
description <p style="text-align: justify;">Let <em>R</em> be a finite commutative ring with identity and <em>P</em> be a prime ideal of <em>R</em>. The vertex set is <em>R - </em>{0} and two distinct vertices are adjacent if their product in <em>P</em>. This graph is called the prime ideal graph of <em>R</em> and denoted by Γ<sub>P</sub>. The relationship among prime ideal, zero-divisor, nilpotent and unit graphs are studied. Also, we show that Γ<sub>P</sub> is simple connected graph with diameter less than or equal to two and both the clique number and the chromatic number of the graph are equal. Furthermore, it has girth 3 if it contains a cycle. In addition, we compute the number of edges of this graph and investigate some properties of Γ<sub>P.</sub></p>
first_indexed 2024-04-10T21:07:13Z
format Article
id doaj.art-1910b697e4df41e6adcbbaf4161b384c
institution Directory Open Access Journal
issn 2541-2205
language English
last_indexed 2024-04-10T21:07:13Z
publishDate 2022-06-01
publisher InaCombS; Universitas Jember; dan Universitas Indonesia
record_format Article
series Indonesian Journal of Combinatorics
spelling doaj.art-1910b697e4df41e6adcbbaf4161b384c2023-01-22T03:10:03ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052022-06-0161424910.19184/ijc.2022.6.1.270Prime ideal graphs of commutative ringsHaval Mohammed Salih0Asaad A. Jund1Soran UniversitySoran University<p style="text-align: justify;">Let <em>R</em> be a finite commutative ring with identity and <em>P</em> be a prime ideal of <em>R</em>. The vertex set is <em>R - </em>{0} and two distinct vertices are adjacent if their product in <em>P</em>. This graph is called the prime ideal graph of <em>R</em> and denoted by Γ<sub>P</sub>. The relationship among prime ideal, zero-divisor, nilpotent and unit graphs are studied. Also, we show that Γ<sub>P</sub> is simple connected graph with diameter less than or equal to two and both the clique number and the chromatic number of the graph are equal. Furthermore, it has girth 3 if it contains a cycle. In addition, we compute the number of edges of this graph and investigate some properties of Γ<sub>P.</sub></p>http://www.ijc.or.id/index.php/ijc/article/view/156prime ideal graph, nilpotent graph, clique number, chromatic number
spellingShingle Haval Mohammed Salih
Asaad A. Jund
Prime ideal graphs of commutative rings
Indonesian Journal of Combinatorics
prime ideal graph, nilpotent graph, clique number, chromatic number
title Prime ideal graphs of commutative rings
title_full Prime ideal graphs of commutative rings
title_fullStr Prime ideal graphs of commutative rings
title_full_unstemmed Prime ideal graphs of commutative rings
title_short Prime ideal graphs of commutative rings
title_sort prime ideal graphs of commutative rings
topic prime ideal graph, nilpotent graph, clique number, chromatic number
url http://www.ijc.or.id/index.php/ijc/article/view/156
work_keys_str_mv AT havalmohammedsalih primeidealgraphsofcommutativerings
AT asaadajund primeidealgraphsofcommutativerings