Notoginsenoside R1 improves intestinal microvascular functioning in sepsis by targeting Drp1-mediated mitochondrial quality imbalance

AbstractContext Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection.Objective To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality.Materials and methods A sepsis model was established i...

Full description

Bibliographic Details
Main Authors: Dongyao Hou, Ruixue Liu, Shuai Hao, Yong Dou, Guizhen Chen, Liangming Liu, Tao Li, Yunxing Cao, He Huang, Chenyang Duan
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Pharmaceutical Biology
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/13880209.2024.2318349
Description
Summary:AbstractContext Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection.Objective To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality.Materials and methods A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1’s safe dosage. Groups for each model were: in vivo—a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro—a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 μM for 30 min). NGR1’s effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated.Results Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 μM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis.Discussion and conclusions Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1’s efficacy across various patient populations, potentially leading to novel treatments for sepsis.
ISSN:1388-0209
1744-5116