An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA

Due to its very desirable properties, Chebyshev polynomials are often used in the design of public key cryptographic systems. This paper discretizes the Chebyshev mapping, generalizes the properties of Chebyshev polynomials, and proposes an improved public key encryption algorithm based on Chebyshev...

Full description

Bibliographic Details
Main Authors: Chunfu Zhang, Yanchun Liang, Adriano Tavares, Lidong Wang, Tiago Gomes, Sandro Pinto
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/16/3/263
_version_ 1797239213440106496
author Chunfu Zhang
Yanchun Liang
Adriano Tavares
Lidong Wang
Tiago Gomes
Sandro Pinto
author_facet Chunfu Zhang
Yanchun Liang
Adriano Tavares
Lidong Wang
Tiago Gomes
Sandro Pinto
author_sort Chunfu Zhang
collection DOAJ
description Due to its very desirable properties, Chebyshev polynomials are often used in the design of public key cryptographic systems. This paper discretizes the Chebyshev mapping, generalizes the properties of Chebyshev polynomials, and proposes an improved public key encryption algorithm based on Chebyshev chaotic mapping and RSA, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>R</mi><mi>P</mi><mi>K</mi><mi>C</mi><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>. This algorithm introduces alternative multiplication coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>, the selection of which is determined by the size of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub><mfenced separators="|"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msub><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mi>N</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msub><mfenced separators="|"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and the specific value selection rules are shared secrets among participants, overcoming the shortcomings of previous schemes. In the key generation and encryption/decryption stages, more complex intermediate processes are used to achieve higher algorithm complexity, making the algorithm more robust against ordinary attacks. The algorithm is also compared with other RSA-based algorithms to demonstrate its effectiveness in terms of performance and security.
first_indexed 2024-04-24T17:47:58Z
format Article
id doaj.art-19386891d0ab4584bdf6a10b317bd9ef
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-24T17:47:58Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-19386891d0ab4584bdf6a10b317bd9ef2024-03-27T14:05:20ZengMDPI AGSymmetry2073-89942024-02-0116326310.3390/sym16030263An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSAChunfu Zhang0Yanchun Liang1Adriano Tavares2Lidong Wang3Tiago Gomes4Sandro Pinto5School of Statistics and Data Science, Zhuhai College of Science and Technology, Zhuhai 519041, ChinaSchool of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, ChinaDepartment of Industrial Electronics, University of Minho, 4800-058 Guimaraes, PortugalSchool of Statistics and Data Science, Zhuhai College of Science and Technology, Zhuhai 519041, ChinaDepartment of Industrial Electronics, University of Minho, 4800-058 Guimaraes, PortugalDepartment of Industrial Electronics, University of Minho, 4800-058 Guimaraes, PortugalDue to its very desirable properties, Chebyshev polynomials are often used in the design of public key cryptographic systems. This paper discretizes the Chebyshev mapping, generalizes the properties of Chebyshev polynomials, and proposes an improved public key encryption algorithm based on Chebyshev chaotic mapping and RSA, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>R</mi><mi>P</mi><mi>K</mi><mi>C</mi><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>. This algorithm introduces alternative multiplication coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>, the selection of which is determined by the size of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub><mfenced separators="|"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msub><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mi>N</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msub><mfenced separators="|"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub><mfenced separators="|"><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mi>N</mi></mrow></semantics></math></inline-formula>, and the specific value selection rules are shared secrets among participants, overcoming the shortcomings of previous schemes. In the key generation and encryption/decryption stages, more complex intermediate processes are used to achieve higher algorithm complexity, making the algorithm more robust against ordinary attacks. The algorithm is also compared with other RSA-based algorithms to demonstrate its effectiveness in terms of performance and security.https://www.mdpi.com/2073-8994/16/3/263public-key cryptosystemChebyshev polynomialsRSAalternative multiplication coefficientssemi-group property
spellingShingle Chunfu Zhang
Yanchun Liang
Adriano Tavares
Lidong Wang
Tiago Gomes
Sandro Pinto
An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
Symmetry
public-key cryptosystem
Chebyshev polynomials
RSA
alternative multiplication coefficients
semi-group property
title An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
title_full An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
title_fullStr An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
title_full_unstemmed An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
title_short An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
title_sort improved public key cryptographic algorithm based on chebyshev polynomials and rsa
topic public-key cryptosystem
Chebyshev polynomials
RSA
alternative multiplication coefficients
semi-group property
url https://www.mdpi.com/2073-8994/16/3/263
work_keys_str_mv AT chunfuzhang animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT yanchunliang animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT adrianotavares animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT lidongwang animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT tiagogomes animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT sandropinto animprovedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT chunfuzhang improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT yanchunliang improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT adrianotavares improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT lidongwang improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT tiagogomes improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa
AT sandropinto improvedpublickeycryptographicalgorithmbasedonchebyshevpolynomialsandrsa