About the number of maximal subsystems in S(2,4,v)

<p><span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">It's of great interest, to find systems </span><em>S</em><span style="font-style: normal;">(2,4,</span><em>v</em><...

Full description

Bibliographic Details
Main Author: Herbert Zeitler
Format: Article
Language:English
Published: Università degli Studi di Catania 1993-11-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/558
Description
Summary:<p><span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">It's of great interest, to find systems </span><em>S</em><span style="font-style: normal;">(2,4,</span><em>v</em><span style="font-style: normal;">) with subsystems </span><em>S</em><span style="font-style: normal;">(2,4,</span><em>r=</em><span style="font-style: normal;">1/3(</span><em>v</em><span style="font-style: normal;">-1)) &ndash; known as maximal subsystems. Up to now there exist only a few results &ndash; mainly due to Resmini and Shen.</span></span></p> <p style="font-style: normal;"><span style="font-family: DejaVu Sans,sans-serif;">In this paper we prove a new partial result:</span></p> <p><span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">Exactly for all </span><em>v</em>∊<span style="font-style: normal;">{121,40}</span><em>+</em><span style="font-style: normal;">108</span><span style="font-style: normal;"><strong>N</strong></span> <span style="font-style: normal;"><span>there exists a system</span></span> <em><span>S</span></em><span style="font-style: normal;"><span>(2,4,</span></span><em><span>v</span></em><span style="font-style: normal;"><span>) with exactly two, but also a system with exactly four maximal subsystems.</span></span></span></p>
ISSN:0373-3505
2037-5298