Learning from Bees: An Approach for Influence Maximization on Viral Campaigns.
Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired appro...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5167354?pdf=render |
_version_ | 1811193612894994432 |
---|---|
author | C Prem Sankar Asharaf S K Satheesh Kumar |
author_facet | C Prem Sankar Asharaf S K Satheesh Kumar |
author_sort | C Prem Sankar |
collection | DOAJ |
description | Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. |
first_indexed | 2024-04-12T00:12:20Z |
format | Article |
id | doaj.art-193e3e3d8ae94f528e888dab03d19889 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T00:12:20Z |
publishDate | 2016-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-193e3e3d8ae94f528e888dab03d198892022-12-22T03:55:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011112e016812510.1371/journal.pone.0168125Learning from Bees: An Approach for Influence Maximization on Viral Campaigns.C Prem SankarAsharaf SK Satheesh KumarMaximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign.http://europepmc.org/articles/PMC5167354?pdf=render |
spellingShingle | C Prem Sankar Asharaf S K Satheesh Kumar Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. PLoS ONE |
title | Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. |
title_full | Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. |
title_fullStr | Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. |
title_full_unstemmed | Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. |
title_short | Learning from Bees: An Approach for Influence Maximization on Viral Campaigns. |
title_sort | learning from bees an approach for influence maximization on viral campaigns |
url | http://europepmc.org/articles/PMC5167354?pdf=render |
work_keys_str_mv | AT cpremsankar learningfrombeesanapproachforinfluencemaximizationonviralcampaigns AT asharafs learningfrombeesanapproachforinfluencemaximizationonviralcampaigns AT ksatheeshkumar learningfrombeesanapproachforinfluencemaximizationonviralcampaigns |