Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage
The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Foods |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-8158/10/10/2314 |
_version_ | 1827679512399183872 |
---|---|
author | Han Tang Changsu Xu Xin Qi Ziming Wang Jinfeng Wang Wenqi Zhou Qi Wang Jinwu Wang |
author_facet | Han Tang Changsu Xu Xin Qi Ziming Wang Jinfeng Wang Wenqi Zhou Qi Wang Jinwu Wang |
author_sort | Han Tang |
collection | DOAJ |
description | The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the corn grain unloading stage was verified by a 3D laser scanner and the “spherical particle filling method”. The grain cylinder was divided into six areas, and the periodic pulsation characteristics at different heights were explored through simulation tests. The results showed that the faster the average speed of corn grain changes in unit time, the more significant the periodic pulsation characteristics were as the height of grain unloading increased. The corn grain pulsateon in the grain cylinder exhibited gradual upward transmission and gradual amplification in the process of transmission. The average velocity decreased with increasing height. The direct cause of pulsation was the variation in the average stress between grain layers. Simulation analysis of grain unloading for different half cone angles of the grain cylinder was carried out. The change in corn grain average velocity over time in the area below 20 mm of the upper free surface was extracted. The results showed that the speed of the top corn grain increased with increasing the half cone angle, and the periodic pulsation phenomenon became more obvious with increasing the half cone angle at half cone angles of 30–65°. A half cone angle of 65–70° marked the critical state of corn grain flow changing from funnel flow to overall flow in the grain cylinder. This study provides a method for studying the periodic pulsation characteristics of different crops during the grain unloading stage and provides a technical reference for the safe design of grain unloading equipment. |
first_indexed | 2024-03-10T06:33:24Z |
format | Article |
id | doaj.art-19522fd67b944dba89a9c489783fc0e2 |
institution | Directory Open Access Journal |
issn | 2304-8158 |
language | English |
last_indexed | 2024-03-10T06:33:24Z |
publishDate | 2021-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Foods |
spelling | doaj.art-19522fd67b944dba89a9c489783fc0e22023-11-22T18:14:05ZengMDPI AGFoods2304-81582021-09-011010231410.3390/foods10102314Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading StageHan Tang0Changsu Xu1Xin Qi2Ziming Wang3Jinfeng Wang4Wenqi Zhou5Qi Wang6Jinwu Wang7College of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaCollege of Engineering, Northeast Agricultural University, Harbin 150030, ChinaThe fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the corn grain unloading stage was verified by a 3D laser scanner and the “spherical particle filling method”. The grain cylinder was divided into six areas, and the periodic pulsation characteristics at different heights were explored through simulation tests. The results showed that the faster the average speed of corn grain changes in unit time, the more significant the periodic pulsation characteristics were as the height of grain unloading increased. The corn grain pulsateon in the grain cylinder exhibited gradual upward transmission and gradual amplification in the process of transmission. The average velocity decreased with increasing height. The direct cause of pulsation was the variation in the average stress between grain layers. Simulation analysis of grain unloading for different half cone angles of the grain cylinder was carried out. The change in corn grain average velocity over time in the area below 20 mm of the upper free surface was extracted. The results showed that the speed of the top corn grain increased with increasing the half cone angle, and the periodic pulsation phenomenon became more obvious with increasing the half cone angle at half cone angles of 30–65°. A half cone angle of 65–70° marked the critical state of corn grain flow changing from funnel flow to overall flow in the grain cylinder. This study provides a method for studying the periodic pulsation characteristics of different crops during the grain unloading stage and provides a technical reference for the safe design of grain unloading equipment.https://www.mdpi.com/2304-8158/10/10/2314corn graingrain cylinderunloadingperiodic pulsationdiscrete element method |
spellingShingle | Han Tang Changsu Xu Xin Qi Ziming Wang Jinfeng Wang Wenqi Zhou Qi Wang Jinwu Wang Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage Foods corn grain grain cylinder unloading periodic pulsation discrete element method |
title | Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage |
title_full | Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage |
title_fullStr | Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage |
title_full_unstemmed | Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage |
title_short | Study on Periodic Pulsation Characteristics of Corn Grain in a Grain Cylinder during the Unloading Stage |
title_sort | study on periodic pulsation characteristics of corn grain in a grain cylinder during the unloading stage |
topic | corn grain grain cylinder unloading periodic pulsation discrete element method |
url | https://www.mdpi.com/2304-8158/10/10/2314 |
work_keys_str_mv | AT hantang studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT changsuxu studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT xinqi studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT zimingwang studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT jinfengwang studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT wenqizhou studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT qiwang studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage AT jinwuwang studyonperiodicpulsationcharacteristicsofcorngraininagraincylinderduringtheunloadingstage |