Predictive Constructions Based on Measure-Valued Pólya Urn Processes

Measure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure that serve as an extension of the generalized <i>k</i>-color Pólya urn model towards a continuum of possible colors. We prove that, for any MVPP <inline-formula><math xmlns="http://www.w3...

Full description

Bibliographic Details
Main Authors: Sandra Fortini, Sonia Petrone, Hristo Sariev
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/22/2845
_version_ 1797509488045981696
author Sandra Fortini
Sonia Petrone
Hristo Sariev
author_facet Sandra Fortini
Sonia Petrone
Hristo Sariev
author_sort Sandra Fortini
collection DOAJ
description Measure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure that serve as an extension of the generalized <i>k</i>-color Pólya urn model towards a continuum of possible colors. We prove that, for any MVPP <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>μ</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> on a Polish space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">X</mi></semantics></math></inline-formula>, the normalized sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>μ</mi><mi>n</mi></msub><mo>/</mo><msub><mi>μ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi mathvariant="double-struck">X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> agrees with the marginal predictive distributions of some random process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>. Moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi>n</mi></msub><mo>=</mo><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>↦</mo><msub><mi>R</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> is a random transition kernel on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">X</mi></semantics></math></inline-formula>; thus, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> represents the contents of an urn, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>X</mi><mi>n</mi></msub></semantics></math></inline-formula> denotes the color of the ball drawn with distribution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi mathvariant="double-struck">X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub></semantics></math></inline-formula>—the subsequent reinforcement. In the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub><mo>=</mo><msub><mi>W</mi><mi>n</mi></msub><msub><mi>δ</mi><msub><mi>X</mi><mi>n</mi></msub></msub></mrow></semantics></math></inline-formula>, for some non-negative random weights <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mn>1</mn></msub><mo>,</mo><msub><mi>W</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></semantics></math></inline-formula>, the process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> is better understood as a randomly reinforced extension of Blackwell and MacQueen’s Pólya sequence. We study the asymptotic properties of the predictive distributions and the empirical frequencies of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> under different assumptions on the weights. We also investigate a generalization of the above models via a randomization of the law of the reinforcement.
first_indexed 2024-03-10T05:18:29Z
format Article
id doaj.art-19707d7563f54698a1f36a918777ae47
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T05:18:29Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-19707d7563f54698a1f36a918777ae472023-11-23T00:13:56ZengMDPI AGMathematics2227-73902021-11-01922284510.3390/math9222845Predictive Constructions Based on Measure-Valued Pólya Urn ProcessesSandra Fortini0Sonia Petrone1Hristo Sariev2Department of Decision Sciences, Bocconi University, 20136 Milano, ItalyDepartment of Decision Sciences, Bocconi University, 20136 Milano, ItalyInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, BulgariaMeasure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure that serve as an extension of the generalized <i>k</i>-color Pólya urn model towards a continuum of possible colors. We prove that, for any MVPP <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>μ</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> on a Polish space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">X</mi></semantics></math></inline-formula>, the normalized sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>μ</mi><mi>n</mi></msub><mo>/</mo><msub><mi>μ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi mathvariant="double-struck">X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> agrees with the marginal predictive distributions of some random process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>. Moreover, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mi>n</mi></msub><mo>=</mo><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>↦</mo><msub><mi>R</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula> is a random transition kernel on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">X</mi></semantics></math></inline-formula>; thus, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> represents the contents of an urn, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>X</mi><mi>n</mi></msub></semantics></math></inline-formula> denotes the color of the ball drawn with distribution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>μ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi mathvariant="double-struck">X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub></semantics></math></inline-formula>—the subsequent reinforcement. In the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><msub><mi>X</mi><mi>n</mi></msub></msub><mo>=</mo><msub><mi>W</mi><mi>n</mi></msub><msub><mi>δ</mi><msub><mi>X</mi><mi>n</mi></msub></msub></mrow></semantics></math></inline-formula>, for some non-negative random weights <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>W</mi><mn>1</mn></msub><mo>,</mo><msub><mi>W</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></semantics></math></inline-formula>, the process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> is better understood as a randomly reinforced extension of Blackwell and MacQueen’s Pólya sequence. We study the asymptotic properties of the predictive distributions and the empirical frequencies of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> under different assumptions on the weights. We also investigate a generalization of the above models via a randomization of the law of the reinforcement.https://www.mdpi.com/2227-7390/9/22/2845predictive distributionsrandom probability measuresreinforced processesPólya sequencesurn schemesBayesian inference
spellingShingle Sandra Fortini
Sonia Petrone
Hristo Sariev
Predictive Constructions Based on Measure-Valued Pólya Urn Processes
Mathematics
predictive distributions
random probability measures
reinforced processes
Pólya sequences
urn schemes
Bayesian inference
title Predictive Constructions Based on Measure-Valued Pólya Urn Processes
title_full Predictive Constructions Based on Measure-Valued Pólya Urn Processes
title_fullStr Predictive Constructions Based on Measure-Valued Pólya Urn Processes
title_full_unstemmed Predictive Constructions Based on Measure-Valued Pólya Urn Processes
title_short Predictive Constructions Based on Measure-Valued Pólya Urn Processes
title_sort predictive constructions based on measure valued polya urn processes
topic predictive distributions
random probability measures
reinforced processes
Pólya sequences
urn schemes
Bayesian inference
url https://www.mdpi.com/2227-7390/9/22/2845
work_keys_str_mv AT sandrafortini predictiveconstructionsbasedonmeasurevaluedpolyaurnprocesses
AT soniapetrone predictiveconstructionsbasedonmeasurevaluedpolyaurnprocesses
AT hristosariev predictiveconstructionsbasedonmeasurevaluedpolyaurnprocesses