Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the f...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Antioxidants |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3921/10/8/1181 |
_version_ | 1797524821144240128 |
---|---|
author | Roma Durak Jan Dampc Monika Kula-Maximenko Mateusz Mołoń Tomasz Durak |
author_facet | Roma Durak Jan Dampc Monika Kula-Maximenko Mateusz Mołoń Tomasz Durak |
author_sort | Roma Durak |
collection | DOAJ |
description | Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids <i>Aphis pomi</i>, <i>Macrosiphum rosae</i> and <i>Cinara cupressi</i>, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures. |
first_indexed | 2024-03-10T09:03:01Z |
format | Article |
id | doaj.art-1973287a72a444749a42bd53ab3b0387 |
institution | Directory Open Access Journal |
issn | 2076-3921 |
language | English |
last_indexed | 2024-03-10T09:03:01Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Antioxidants |
spelling | doaj.art-1973287a72a444749a42bd53ab3b03872023-11-22T06:35:17ZengMDPI AGAntioxidants2076-39212021-07-01108118110.3390/antiox10081181Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature IncreaseRoma Durak0Jan Dampc1Monika Kula-Maximenko2Mateusz Mołoń3Tomasz Durak4Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, PolandInstitute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, PolandThe Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, PolandInstitute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, PolandInstitute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, PolandTemperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids <i>Aphis pomi</i>, <i>Macrosiphum rosae</i> and <i>Cinara cupressi</i>, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.https://www.mdpi.com/2076-3921/10/8/1181aphidsenzymatic markersoxidative stressdevelopmental stages |
spellingShingle | Roma Durak Jan Dampc Monika Kula-Maximenko Mateusz Mołoń Tomasz Durak Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase Antioxidants aphids enzymatic markers oxidative stress developmental stages |
title | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_full | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_fullStr | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_full_unstemmed | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_short | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_sort | changes in antioxidative oxidoreductive and detoxification enzymes during development of aphids and temperature increase |
topic | aphids enzymatic markers oxidative stress developmental stages |
url | https://www.mdpi.com/2076-3921/10/8/1181 |
work_keys_str_mv | AT romadurak changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT jandampc changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT monikakulamaximenko changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT mateuszmołon changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT tomaszdurak changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease |