Summary: | Motivated by the need for robust models of the Covid-19 epidemic that adequately reflect the extreme heterogeneity of humans and society, this paper presents a novel framework that treats a population of N individuals as an inhomogeneous random social network (IRSN). The nodes of the network represent individuals of different types and the edges represent significant social relationships. An epidemic is pictured as a contagion process that develops day by day, triggered by a seed infection introduced into the population on day 0. Individuals’ social behaviour and health status are assumed to vary randomly within each type, with probability distributions that vary with their type. A formulation and analysis is given for a SEIR (susceptible-exposed-infective-removed) network contagion model, considered as an agent based model, which focusses on the number of people of each type in each compartment each day. The main result is an analytical formula valid in the large N limit for the stochastic state of the system on day t in terms of the initial conditions. The formula involves only one-dimensional integration. The model can be implemented numerically for any number of types by a deterministic algorithm that efficiently incorporates the discrete Fourier transform. While the paper focusses on fundamental properties rather than far ranging applications, a concluding discussion addresses a number of domains, notably public awareness, infectious disease research and public health policy, where the IRSN framework may provide unique insights.
|