Cement-fly ash mortars durability, with fly ash from fluidized bed boilers and conventional combustion, exposed to aggressive environment influence

The study shows results of research on the aggressive environment impact (1, 3 and 5% HCl solution) on durability of cement mortars with fraction from 30 to 45% by mass of fly ashes from the fluidized bed combustion (FBC fly ash) and conventional fly ashes used separately and in the form of a mixtur...

Full description

Bibliographic Details
Main Authors: Janowska-Renkas Elżbieta, Kowalska Jolanta, Janus Grzegorz, Kaliciak Agnieszka
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201817402006
Description
Summary:The study shows results of research on the aggressive environment impact (1, 3 and 5% HCl solution) on durability of cement mortars with fraction from 30 to 45% by mass of fly ashes from the fluidized bed combustion (FBC fly ash) and conventional fly ashes used separately and in the form of a mixture. The impact of aggressive environments on durability of cement and ash mortars was tested for aperiod of 365 days, by testing the compressive strength, linear changes, mass loss and porosity. It was demonstrated that mortars with the content of FBC fly ashes, after 365 days of tests showed the higher resistance to aggressive environment impact. It is confirmed by e.g. their higher compressive strength, and thus the reduced total porosity. Reduction of total porosity content (<50 nm) was accompanied by the increased compressive strength, which in the aqueous environment was in favour of cement mortars, and in the aggressive environment in favour of cement and ash mortars. It was demonstrated that the content of pores < 200 nm was lower for mortars with FBC fly ashes and mixtures of ashes regardless of environment the mortars were stored in. A beneficial impact of FBC fly ashes was found on physical properties of mortars, i.e. reduction of the shrinkage, lower mass loss and reduced destruction of mortars in the acid corrosion environment. That effect was especially beneficial for the mortar with higher (45% by mass) content of FBC fly ashes, regardless of aggressive character of the environment.
ISSN:2261-236X