Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power

Attention can be oriented in space covertly without the need of eye movements. We used multivariate pattern classification analyses (MVPA) to investigate whether the time course of the deployment of covert spatial attention leading up to the observer’s perceptual decision can be decoded from both EE...

Full description

Bibliographic Details
Main Authors: Andrea Desantis, Adrien Chan-Hon-Tong, Thérèse Collins, Hinze Hogendoorn, Patrick Cavanagh
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-10-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnhum.2020.570419/full
_version_ 1819011632091627520
author Andrea Desantis
Andrea Desantis
Andrea Desantis
Adrien Chan-Hon-Tong
Thérèse Collins
Hinze Hogendoorn
Hinze Hogendoorn
Patrick Cavanagh
Patrick Cavanagh
Patrick Cavanagh
author_facet Andrea Desantis
Andrea Desantis
Andrea Desantis
Adrien Chan-Hon-Tong
Thérèse Collins
Hinze Hogendoorn
Hinze Hogendoorn
Patrick Cavanagh
Patrick Cavanagh
Patrick Cavanagh
author_sort Andrea Desantis
collection DOAJ
description Attention can be oriented in space covertly without the need of eye movements. We used multivariate pattern classification analyses (MVPA) to investigate whether the time course of the deployment of covert spatial attention leading up to the observer’s perceptual decision can be decoded from both EEG alpha power and raw activity traces. Decoding attention from these signals can help determine whether raw EEG signals and alpha power reflect the same or distinct features of attentional selection. Using a classical cueing task, we showed that the orientation of covert spatial attention can be decoded by both signals. However, raw activity and alpha power may reflect different features of spatial attention, with alpha power more associated with the orientation of covert attention in space and raw activity with the influence of attention on perceptual processes.
first_indexed 2024-12-21T01:31:14Z
format Article
id doaj.art-199aeeec5ebb45c8b31eb2a85dc0889b
institution Directory Open Access Journal
issn 1662-5161
language English
last_indexed 2024-12-21T01:31:14Z
publishDate 2020-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Human Neuroscience
spelling doaj.art-199aeeec5ebb45c8b31eb2a85dc0889b2022-12-21T19:20:22ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612020-10-011410.3389/fnhum.2020.570419570419Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha PowerAndrea Desantis0Andrea Desantis1Andrea Desantis2Adrien Chan-Hon-Tong3Thérèse Collins4Hinze Hogendoorn5Hinze Hogendoorn6Patrick Cavanagh7Patrick Cavanagh8Patrick Cavanagh9Département Traitement de l’Information et Systèmes, ONERA, Palaiseau, FranceIntegrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, FranceInstitut de Neurosciences de la Timone (UMR 7289), CNRS and Aix-Marseille Université, Marseille, FranceDépartement Traitement de l’Information et Systèmes, ONERA, Palaiseau, FranceIntegrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, FranceMelbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, AustraliaDepartment of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, NetherlandsIntegrative Neuroscience and Cognition Center (UMR 8002), CNRS and Université de Paris, Paris, FranceDepartment of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United StatesDepartment of Psychology, Glendon College, North York, ON, CanadaAttention can be oriented in space covertly without the need of eye movements. We used multivariate pattern classification analyses (MVPA) to investigate whether the time course of the deployment of covert spatial attention leading up to the observer’s perceptual decision can be decoded from both EEG alpha power and raw activity traces. Decoding attention from these signals can help determine whether raw EEG signals and alpha power reflect the same or distinct features of attentional selection. Using a classical cueing task, we showed that the orientation of covert spatial attention can be decoded by both signals. However, raw activity and alpha power may reflect different features of spatial attention, with alpha power more associated with the orientation of covert attention in space and raw activity with the influence of attention on perceptual processes.https://www.frontiersin.org/article/10.3389/fnhum.2020.570419/fullEEG decodingmultivariate pattern classificationcovert spatial attentionraw activityalpha oscillations
spellingShingle Andrea Desantis
Andrea Desantis
Andrea Desantis
Adrien Chan-Hon-Tong
Thérèse Collins
Hinze Hogendoorn
Hinze Hogendoorn
Patrick Cavanagh
Patrick Cavanagh
Patrick Cavanagh
Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
Frontiers in Human Neuroscience
EEG decoding
multivariate pattern classification
covert spatial attention
raw activity
alpha oscillations
title Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
title_full Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
title_fullStr Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
title_full_unstemmed Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
title_short Decoding the Temporal Dynamics of Covert Spatial Attention Using Multivariate EEG Analysis: Contributions of Raw Amplitude and Alpha Power
title_sort decoding the temporal dynamics of covert spatial attention using multivariate eeg analysis contributions of raw amplitude and alpha power
topic EEG decoding
multivariate pattern classification
covert spatial attention
raw activity
alpha oscillations
url https://www.frontiersin.org/article/10.3389/fnhum.2020.570419/full
work_keys_str_mv AT andreadesantis decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT andreadesantis decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT andreadesantis decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT adrienchanhontong decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT theresecollins decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT hinzehogendoorn decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT hinzehogendoorn decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT patrickcavanagh decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT patrickcavanagh decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower
AT patrickcavanagh decodingthetemporaldynamicsofcovertspatialattentionusingmultivariateeeganalysiscontributionsofrawamplitudeandalphapower