Wavelets and partial differential equations for image denoising

In this paper a wavelet based model for image de-noising is presented. Wavelet coefficients are modelled as waves that grow while dilating along scales. The model establishes a precise link between corresponding modulus maxima in the wavelet domain and then allows to predict wavelet coefficients at...

Full description

Bibliographic Details
Main Authors: Vittoria Bruni, Benedetto Piccoli, Domenico Vitulano
Format: Article
Language:English
Published: Computer Vision Center Press 2007-02-01
Series:ELCVIA Electronic Letters on Computer Vision and Image Analysis
Subjects:
Online Access:https://elcvia.cvc.uab.es/article/view/147
Description
Summary:In this paper a wavelet based model for image de-noising is presented. Wavelet coefficients are modelled as waves that grow while dilating along scales. The model establishes a precise link between corresponding modulus maxima in the wavelet domain and then allows to predict wavelet coefficients at each scale from the first one. This property combined with the theoretical results about the characterization of singularities in the wavelet domain enables to discard noise. Significant structures of the image are well recovered while some annoying artifacts along image edges are reduced. Some experimental results show that the proposed approach outperforms the most recent and effective wavelet based denoising schemes.
ISSN:1577-5097