Measuring and modelling occupancy time in NHS continuing healthcare
<p>Abstract</p> <p>Background</p> <p>Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing pati...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-06-01
|
Series: | BMC Health Services Research |
Online Access: | http://www.biomedcentral.com/1472-6963/11/155 |
_version_ | 1818065035285495808 |
---|---|
author | Millard Peter H Chaussalet Thierry J Demir Eren Chahed Salma Toffa Samuel |
author_facet | Millard Peter H Chaussalet Thierry J Demir Eren Chahed Salma Toffa Samuel |
author_sort | Millard Peter H |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time.</p> <p>Methods</p> <p>An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31) London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS) modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly).</p> <p>Results</p> <p>We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days), some others staying for few months and the third category of patients staying for a long period of time (years). Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health) were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model.</p> <p>Conclusions</p> <p>The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards updating the dataset and refining the results.</p> |
first_indexed | 2024-12-10T14:45:29Z |
format | Article |
id | doaj.art-19a38134097d49909106053a74e56432 |
institution | Directory Open Access Journal |
issn | 1472-6963 |
language | English |
last_indexed | 2024-12-10T14:45:29Z |
publishDate | 2011-06-01 |
publisher | BMC |
record_format | Article |
series | BMC Health Services Research |
spelling | doaj.art-19a38134097d49909106053a74e564322022-12-22T01:44:34ZengBMCBMC Health Services Research1472-69632011-06-0111115510.1186/1472-6963-11-155Measuring and modelling occupancy time in NHS continuing healthcareMillard Peter HChaussalet Thierry JDemir ErenChahed SalmaToffa Samuel<p>Abstract</p> <p>Background</p> <p>Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time.</p> <p>Methods</p> <p>An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31) London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS) modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly).</p> <p>Results</p> <p>We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days), some others staying for few months and the third category of patients staying for a long period of time (years). Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health) were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model.</p> <p>Conclusions</p> <p>The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards updating the dataset and refining the results.</p>http://www.biomedcentral.com/1472-6963/11/155 |
spellingShingle | Millard Peter H Chaussalet Thierry J Demir Eren Chahed Salma Toffa Samuel Measuring and modelling occupancy time in NHS continuing healthcare BMC Health Services Research |
title | Measuring and modelling occupancy time in NHS continuing healthcare |
title_full | Measuring and modelling occupancy time in NHS continuing healthcare |
title_fullStr | Measuring and modelling occupancy time in NHS continuing healthcare |
title_full_unstemmed | Measuring and modelling occupancy time in NHS continuing healthcare |
title_short | Measuring and modelling occupancy time in NHS continuing healthcare |
title_sort | measuring and modelling occupancy time in nhs continuing healthcare |
url | http://www.biomedcentral.com/1472-6963/11/155 |
work_keys_str_mv | AT millardpeterh measuringandmodellingoccupancytimeinnhscontinuinghealthcare AT chaussaletthierryj measuringandmodellingoccupancytimeinnhscontinuinghealthcare AT demireren measuringandmodellingoccupancytimeinnhscontinuinghealthcare AT chahedsalma measuringandmodellingoccupancytimeinnhscontinuinghealthcare AT toffasamuel measuringandmodellingoccupancytimeinnhscontinuinghealthcare |