New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain

Recently, a number of researchers from different fields have taken a keen interest in the domain of fractional <i>q</i>-calculus on the basis of fractional integrals and derivative operators. This has been used in various scientific research and technology fields, including optics, mathe...

Full description

Bibliographic Details
Main Authors: Mohammad Faisal Khan, Mohammed AbaOud
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/1/71
_version_ 1827372257385644032
author Mohammad Faisal Khan
Mohammed AbaOud
author_facet Mohammad Faisal Khan
Mohammed AbaOud
author_sort Mohammad Faisal Khan
collection DOAJ
description Recently, a number of researchers from different fields have taken a keen interest in the domain of fractional <i>q</i>-calculus on the basis of fractional integrals and derivative operators. This has been used in various scientific research and technology fields, including optics, mathematical biology, plasma physics, electromagnetic theory, and many more. This article explores some mathematical applications of the fractional <i>q</i>-differential and integral operator in the field of geometric function theory. By using the linear multiplier fractional <i>q</i>-differintegral operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>q</mi><mo>,</mo><mi>λ</mi></mrow><mi>m</mi></msubsup><mfenced separators="" open="(" close=")"><mi>ρ</mi><mo>,</mo><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> and subordination, we define and develop a collection of <i>q</i>-starlike functions that are linked to the cardioid domain. This study also investigates sharp inequality problems like initial coefficient bounds, the Fekete–Szego problems, and the coefficient inequalities for a new class of <i>q</i>-starlike functions in the open unit disc <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>. Furthermore, we analyze novel findings with respect to the inverse function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>μ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> within the class of <i>q</i>-starlike functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>. The findings in this paper are easy to understand and show a connection between present and past studies.
first_indexed 2024-03-08T10:54:59Z
format Article
id doaj.art-19a53002dbd54849a66409495485b43c
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-08T10:54:59Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-19a53002dbd54849a66409495485b43c2024-01-26T16:36:44ZengMDPI AGFractal and Fractional2504-31102024-01-01817110.3390/fractalfract8010071New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid DomainMohammad Faisal Khan0Mohammed AbaOud1Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi ArabiaDepartment of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi ArabiaRecently, a number of researchers from different fields have taken a keen interest in the domain of fractional <i>q</i>-calculus on the basis of fractional integrals and derivative operators. This has been used in various scientific research and technology fields, including optics, mathematical biology, plasma physics, electromagnetic theory, and many more. This article explores some mathematical applications of the fractional <i>q</i>-differential and integral operator in the field of geometric function theory. By using the linear multiplier fractional <i>q</i>-differintegral operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>D</mi><mrow><mi>q</mi><mo>,</mo><mi>λ</mi></mrow><mi>m</mi></msubsup><mfenced separators="" open="(" close=")"><mi>ρ</mi><mo>,</mo><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> and subordination, we define and develop a collection of <i>q</i>-starlike functions that are linked to the cardioid domain. This study also investigates sharp inequality problems like initial coefficient bounds, the Fekete–Szego problems, and the coefficient inequalities for a new class of <i>q</i>-starlike functions in the open unit disc <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>. Furthermore, we analyze novel findings with respect to the inverse function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>μ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> within the class of <i>q</i>-starlike functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula>. The findings in this paper are easy to understand and show a connection between present and past studies.https://www.mdpi.com/2504-3110/8/1/71analytic functions<i>q</i>-calculus<i>q</i>-starlike functionsfractional <i>q</i>-calculuscardioid domainsubordination
spellingShingle Mohammad Faisal Khan
Mohammed AbaOud
New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
Fractal and Fractional
analytic functions
<i>q</i>-calculus
<i>q</i>-starlike functions
fractional <i>q</i>-calculus
cardioid domain
subordination
title New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
title_full New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
title_fullStr New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
title_full_unstemmed New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
title_short New Applications of Fractional <i>q</i>-Calculus Operator for a New Subclass of <i>q</i>-Starlike Functions Related with the Cardioid Domain
title_sort new applications of fractional i q i calculus operator for a new subclass of i q i starlike functions related with the cardioid domain
topic analytic functions
<i>q</i>-calculus
<i>q</i>-starlike functions
fractional <i>q</i>-calculus
cardioid domain
subordination
url https://www.mdpi.com/2504-3110/8/1/71
work_keys_str_mv AT mohammadfaisalkhan newapplicationsoffractionaliqicalculusoperatorforanewsubclassofiqistarlikefunctionsrelatedwiththecardioiddomain
AT mohammedabaoud newapplicationsoffractionaliqicalculusoperatorforanewsubclassofiqistarlikefunctionsrelatedwiththecardioiddomain