Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau

This paper presents an approach for retrieval of soil moisture in Nagqu region of Tibetan Plateau using VV-polarized Sentinel-1 SAR and MODIS optical data, by coupling the semi-empirical Oh-2004 model and the Water Cloud Model (WCM). The Oh model is first used to estimate the surface roughness param...

Full description

Bibliographic Details
Main Authors: Mengying Yang, Hongquan Wang, Cheng Tong, Luyao Zhu, Xiaodong Deng, Jinsong Deng, Ke Wang
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/10/1913
_version_ 1797534148294868992
author Mengying Yang
Hongquan Wang
Cheng Tong
Luyao Zhu
Xiaodong Deng
Jinsong Deng
Ke Wang
author_facet Mengying Yang
Hongquan Wang
Cheng Tong
Luyao Zhu
Xiaodong Deng
Jinsong Deng
Ke Wang
author_sort Mengying Yang
collection DOAJ
description This paper presents an approach for retrieval of soil moisture in Nagqu region of Tibetan Plateau using VV-polarized Sentinel-1 SAR and MODIS optical data, by coupling the semi-empirical Oh-2004 model and the Water Cloud Model (WCM). The Oh model is first used to estimate the surface roughness parameter based on the hypothesis that the roughness is invariant among SAR acquisitions. Afterward, the vegetation water content (VWC) in the WCM is calculated from the daily MODIS NDVI data obtained by temporal interpolation. To improve the performance of the model, the parameters A, B, and <i>α</i> of the WCM are analyzed and optimized using randomly selected half of the sampled dataset. Then, the soil moisture is retrieved by minimizing a cost function between the simulated and measured backscattering coefficients. The comparison of the retrieved soil moisture with the ground measurements shows the determination coefficient R<sup>2</sup> and the Root Mean Square Error (RMSE) are 0.46 and 0.08 m<sup>3</sup>/m<sup>3</sup>, respectively. These results demonstrate the capability and reliability of Sentinel-1 SAR data for estimating the soil moisture over the Tibetan Plateau.
first_indexed 2024-03-10T11:26:32Z
format Article
id doaj.art-19a8f09a71ed4d28a0c51d5f8d27bf97
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T11:26:32Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-19a8f09a71ed4d28a0c51d5f8d27bf972023-11-21T19:36:55ZengMDPI AGRemote Sensing2072-42922021-05-011310191310.3390/rs13101913Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan PlateauMengying Yang0Hongquan Wang1Cheng Tong2Luyao Zhu3Xiaodong Deng4Jinsong Deng5Ke Wang6College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, ChinaThis paper presents an approach for retrieval of soil moisture in Nagqu region of Tibetan Plateau using VV-polarized Sentinel-1 SAR and MODIS optical data, by coupling the semi-empirical Oh-2004 model and the Water Cloud Model (WCM). The Oh model is first used to estimate the surface roughness parameter based on the hypothesis that the roughness is invariant among SAR acquisitions. Afterward, the vegetation water content (VWC) in the WCM is calculated from the daily MODIS NDVI data obtained by temporal interpolation. To improve the performance of the model, the parameters A, B, and <i>α</i> of the WCM are analyzed and optimized using randomly selected half of the sampled dataset. Then, the soil moisture is retrieved by minimizing a cost function between the simulated and measured backscattering coefficients. The comparison of the retrieved soil moisture with the ground measurements shows the determination coefficient R<sup>2</sup> and the Root Mean Square Error (RMSE) are 0.46 and 0.08 m<sup>3</sup>/m<sup>3</sup>, respectively. These results demonstrate the capability and reliability of Sentinel-1 SAR data for estimating the soil moisture over the Tibetan Plateau.https://www.mdpi.com/2072-4292/13/10/1913Sentinel-1MODISsoil moisturewater cloud modelOh model
spellingShingle Mengying Yang
Hongquan Wang
Cheng Tong
Luyao Zhu
Xiaodong Deng
Jinsong Deng
Ke Wang
Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
Remote Sensing
Sentinel-1
MODIS
soil moisture
water cloud model
Oh model
title Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
title_full Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
title_fullStr Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
title_full_unstemmed Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
title_short Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data over Nagqu Region of Tibetan Plateau
title_sort soil moisture retrievals using multi temporal sentinel 1 data over nagqu region of tibetan plateau
topic Sentinel-1
MODIS
soil moisture
water cloud model
Oh model
url https://www.mdpi.com/2072-4292/13/10/1913
work_keys_str_mv AT mengyingyang soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT hongquanwang soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT chengtong soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT luyaozhu soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT xiaodongdeng soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT jinsongdeng soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau
AT kewang soilmoistureretrievalsusingmultitemporalsentinel1dataovernagquregionoftibetanplateau