Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys

In order to increase the strength of Al-Zr alloys, which are promisingly used for heat-resistant conductors, the coupling effect of Mn addition (0.16 wt.% and 0.88 wt.%) and deformation on the precipitation, mechanical, and electrical properties of an Al-0.18wt.% Zr alloy was studied using transmiss...

Full description

Bibliographic Details
Main Authors: Ruihong Wang, Yulei Lai, Bilong Liu, Bao’an Chen
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/14/1/63
Description
Summary:In order to increase the strength of Al-Zr alloys, which are promisingly used for heat-resistant conductors, the coupling effect of Mn addition (0.16 wt.% and 0.88 wt.%) and deformation on the precipitation, mechanical, and electrical properties of an Al-0.18wt.% Zr alloy was studied using transmission electron microscopy (TEM), atom probe tomography (APT), hardness testing, and electrical conductivity measurement, respectively. Results showed that the Mn addition fully suppresses the Al<sub>3</sub>Zr precipitation in both hot-deformed and undeformed cases, which is mainly due to a strong Mn-vacancy bonding, in which Mn atoms seize vacancies and hence reduce the available vacancies for Al<sub>3</sub>Zr nucleation. Minor 0.16 wt.% Mn addition causes a simultaneous decrease in hardness and electrical conductivity, regardless of whether there is deformation. The higher 0.88 wt.% Mn addition, however, significantly increases the hardness by over 40%, especially in combination with deformation. Possible influencing factors such as grain size, dislocations, intergranular/intragranular precipitation, and solute clusters are comparatively discussed in terms of microstructural features and mechanical/electrical properties that are tuned by Mn addition and/or deformation. It is found that the Mn addition can make remarkable contributions to the hardness and thermal stability of the Al-Zr alloys when coupled with deformation.
ISSN:2075-4701