Summary: | The rhizomicrobiome is composed of microbes that live in association with plant roots. From nutrient cycling to carbon sequestration, soil microorganisms have provided a solid base for natural and agricultural ecosystems to function. The relationship between plant roots and soil microorganisms is especially relevant in food staples such as rice (<i>Oryza sativa</i> L.), as the various properties of these microbes can influence crop yield and plant health, thereby affecting a major portion of the food supply for an ever-growing world population. In this study, we used 16S rRNA gene-based metagenomic analysis to investigate the impact of crop rotation and soil cultivation methods (no-till or tillage) on rhizosphere bacterial diversity and composition in eight crop fields in Arkansas. Illumina MiSeq sequencing revealed 56 Phyla, with four major Phyla: Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. Soil microbial communities in the samples studied were phylogenetically diverse but with a stable community structure. Crop rotation and tillage did not significantly affect bacterial diversity.
|