MFFA-SARNET: Deep Transferred Multi-Level Feature Fusion Attention Network with Dual Optimized Loss for Small-Sample SAR ATR

Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), most algorithms of which have employed and relied on sufficient training samples to receive a strong discriminative classification model, has remained a challenging task in recent years, among which the challenge of SAR data acquisit...

Full description

Bibliographic Details
Main Authors: Yikui Zhai, Wenbo Deng, Tian Lan, Bing Sun, Zilu Ying, Junying Gan, Chaoyun Mai, Jingwen Li, Ruggero Donida Labati, Vincenzo Piuri, Fabio Scotti
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/9/1385
Description
Summary:Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), most algorithms of which have employed and relied on sufficient training samples to receive a strong discriminative classification model, has remained a challenging task in recent years, among which the challenge of SAR data acquisition and further insight into the intuitive features of SAR images are the main concerns. In this paper, a deep transferred multi-level feature fusion attention network with dual optimized loss, called a multi-level feature attention Synthetic Aperture Radar network (MFFA-SARNET), is proposed to settle the problem of small samples in SAR ATR tasks. Firstly, a multi-level feature attention (MFFA) network is established to learn more discriminative features from SAR images with a fusion method, followed by alleviating the impact of background features on images with the following attention module that focuses more on the target features. Secondly, a novel dual optimized loss is incorporated to further optimize the classification network, which enhances the robust and discriminative learning power of features. Thirdly, transfer learning is utilized to validate the variances and small-sample classification tasks. Extensive experiments conducted on a public database with three different configurations consistently demonstrate the effectiveness of our proposed network, and the significant improvements yielded to surpass those of the state-of-the-art methods under small-sample conditions.
ISSN:2072-4292