An AdaBoost Method with K′K-Means Bayes Classifier for Imbalanced Data

This article proposes a new AdaBoost method with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="normal">k</mi></mrow><mo>′</mo></msu...

Full description

Bibliographic Details
Main Authors: Yanfeng Zhang, Lichun Wang
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/8/1878
Description
Summary:This article proposes a new AdaBoost method with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="normal">k</mi></mrow><mo>′</mo></msup></semantics></math></inline-formula>k-means Bayes classifier for imbalanced data. It reduces the imbalance degree of training data through the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="normal">k</mi></mrow><mo>′</mo></msup></semantics></math></inline-formula>k-means Bayes method and then deals with the imbalanced classification problem using multiple iterations with weight control, achieving a good effect without losing any raw data information or needing to generate more relevant data manually. The effectiveness of the proposed method is verified by comparing it with other traditional methods based on numerical experiments. In the NSL-KDD data experiment, the F-score values of each minority class are also greater than the other methods.
ISSN:2227-7390