Methicillin-resistant coagulase-negative staphylococci in healthy dogs

The objective of this study was to evaluate the prevalence of coagulase-negative staphylococci in healthy dogs and to determine whether methicillin-resistant staphylococci expressed the mecA gene. Nasal and rectal swab samples were taken from 50 clinically healthy dogs. The prevalence of coagulase-n...

Full description

Bibliographic Details
Main Authors: J. Siugzdaite, A. Gabinaitiene
Format: Article
Language:English
Published: Czech Academy of Agricultural Sciences 2017-09-01
Series:Veterinární Medicína
Subjects:
Online Access:https://vetmed.agriculturejournals.cz/artkey/vet-201709-0001_methicillin-resistant-coagulase-negative-staphylococci-in-healthy-dogs.php
Description
Summary:The objective of this study was to evaluate the prevalence of coagulase-negative staphylococci in healthy dogs and to determine whether methicillin-resistant staphylococci expressed the mecA gene. Nasal and rectal swab samples were taken from 50 clinically healthy dogs. The prevalence of coagulase-negative staphylococci was evaluated according to phenotypic properties. The agar diffusion method was applied to evaluate antimicrobial resistance and the prevalence of methicillin resistance was determined using PCR analysing the mecA gene. A total of 59 coagulase-negative staphylococcus strains were isolated from the nostrils and rectums of 37 (74%) clinically healthy dogs. The prevalence of coagulase-negative staphylococci in female dogs was significantly higher compared with male dogs (P < 0.05). The results of antimicrobial susceptibility testing showed that 6.7% of the strains were resistant to oxacillin, 23.7% were resistant to penicillin, 22% to ampicillin and 16.9% to erythromycin. The mecA PCR revealed one oxacillin-sensitive and four oxacillin-resistant coagulase-negative staphylococci strains to be mecA carriers. Staphylococcus sciuri (60%) and Staphylococcus warneri (20%) were the most prevalent species among methicillin-resistant coagulase negative staphylococci. High antimicrobial resistance rates for these bacteria were observed against penicillin (100%), ampicillin (100%), oxacillin (80%), erythromycin (80%) and gentamicin (60%). All strains were susceptible to vancomycin and enrofloxacin. It is assumed that methicillin-resistance genes evolved in coagulase-negative staphylococcus and were then horizontally transferred among staphylococci.
ISSN:0375-8427
1805-9392