Bayesian composite quantile regression for the single-index model.

By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Mont...

Full description

Bibliographic Details
Main Authors: Xiaohui Yuan, Xuefei Xiang, Xinran Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0285277
_version_ 1797805673770123264
author Xiaohui Yuan
Xuefei Xiang
Xinran Zhang
author_facet Xiaohui Yuan
Xuefei Xiang
Xinran Zhang
author_sort Xiaohui Yuan
collection DOAJ
description By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Monte Carlo sampling algorithms are also given. The proposed method is illustrated by three simulation examples and a real dataset.
first_indexed 2024-03-13T05:55:37Z
format Article
id doaj.art-19e6e1e0000e438991e0fdc9db30c9a5
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-03-13T05:55:37Z
publishDate 2023-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-19e6e1e0000e438991e0fdc9db30c9a52023-06-13T05:31:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01185e028527710.1371/journal.pone.0285277Bayesian composite quantile regression for the single-index model.Xiaohui YuanXuefei XiangXinran ZhangBy using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Monte Carlo sampling algorithms are also given. The proposed method is illustrated by three simulation examples and a real dataset.https://doi.org/10.1371/journal.pone.0285277
spellingShingle Xiaohui Yuan
Xuefei Xiang
Xinran Zhang
Bayesian composite quantile regression for the single-index model.
PLoS ONE
title Bayesian composite quantile regression for the single-index model.
title_full Bayesian composite quantile regression for the single-index model.
title_fullStr Bayesian composite quantile regression for the single-index model.
title_full_unstemmed Bayesian composite quantile regression for the single-index model.
title_short Bayesian composite quantile regression for the single-index model.
title_sort bayesian composite quantile regression for the single index model
url https://doi.org/10.1371/journal.pone.0285277
work_keys_str_mv AT xiaohuiyuan bayesiancompositequantileregressionforthesingleindexmodel
AT xuefeixiang bayesiancompositequantileregressionforthesingleindexmodel
AT xinranzhang bayesiancompositequantileregressionforthesingleindexmodel