Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data

Landsat-8 derived Land Surface Temperature (LST) is used to measure Surface Urban Heat Island (SUHI) patterns and intensity in Worcester, MA, USA. Additionally, near-surface air temperature variability is measured using in-situ sensors to further contextualize the urban-to-rural land-cover driven th...

Full description

Bibliographic Details
Main Authors: A. Elmes, M. Healy, N. Geron, M.M. Andrews, J. Rogan, D.G. Martin, F. Sangermano, C. A. Williams, B. Weil
Format: Article
Language:English
Published: Taylor & Francis Group 2020-10-01
Series:GIScience & Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/15481603.2020.1818950
_version_ 1827811687833534464
author A. Elmes
M. Healy
N. Geron
M.M. Andrews
J. Rogan
D.G. Martin
F. Sangermano
C. A. Williams
B. Weil
author_facet A. Elmes
M. Healy
N. Geron
M.M. Andrews
J. Rogan
D.G. Martin
F. Sangermano
C. A. Williams
B. Weil
author_sort A. Elmes
collection DOAJ
description Landsat-8 derived Land Surface Temperature (LST) is used to measure Surface Urban Heat Island (SUHI) patterns and intensity in Worcester, MA, USA. Additionally, near-surface air temperature variability is measured using in-situ sensors to further contextualize the urban-to-rural land-cover driven thermal patterns in the study area. Despite the widespread applicability of thermal data, many SUHI studies do not compare LST with in-situ information. Comparisons between satellite-based and in-situ measurements of land surface temperature (LST) are important for establishing confidence in the utility of remotely sensed information to monitor and help improve the lived experience in cities. The objective of this study is to determine the capability of Landsat-8 Thermal Infrared Scanner (TIRS) to measure fine-scale temperature variation in a moderately sized urban area with a mixture of land-cover types. Ground-Level Temperature (GLT) was measured at 13 sites using iButton® Thermochron® temperature sensors from 13 June 2013 to 28 October 2014. Landsat-derived LST was compared to in-situ GLT using 30 Landsat-8 TIRS images for the commensurate time period. Sites with 1) eastern solar exposure; 2) low tree canopy coverage; and 3) proximity to impervious surfaces have higher annual temperature and greater offset from Landsat-derived LST. Sites with more than 47% tree canopy coverage have a more consistent LST and GLT relationship, (e.g. MAE < 3.74°C), show lower annual variability (e.g. r2 > 0.85), and also experienced low LST variability over the time series (e.g. coefficient of variation 0.007). Results indicate that site characteristics and land-cover type affect the offset between in-situ air temperature measurements and satellite-derived LST.
first_indexed 2024-03-11T23:09:06Z
format Article
id doaj.art-19e8bf391bf94129b1aa97a705e969f6
institution Directory Open Access Journal
issn 1548-1603
1943-7226
language English
last_indexed 2024-03-11T23:09:06Z
publishDate 2020-10-01
publisher Taylor & Francis Group
record_format Article
series GIScience & Remote Sensing
spelling doaj.art-19e8bf391bf94129b1aa97a705e969f62023-09-21T12:34:16ZengTaylor & Francis GroupGIScience & Remote Sensing1548-16031943-72262020-10-0157784586410.1080/15481603.2020.18189501818950Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) dataA. Elmes0M. Healy1N. Geron2M.M. Andrews3J. Rogan4D.G. Martin5F. Sangermano6C. A. Williams7B. Weil8Clark UniversityClark UniversityClark UniversityClark UniversityClark UniversityClark UniversityClark UniversityClark UniversityUniversity of Massachusetts AmherstLandsat-8 derived Land Surface Temperature (LST) is used to measure Surface Urban Heat Island (SUHI) patterns and intensity in Worcester, MA, USA. Additionally, near-surface air temperature variability is measured using in-situ sensors to further contextualize the urban-to-rural land-cover driven thermal patterns in the study area. Despite the widespread applicability of thermal data, many SUHI studies do not compare LST with in-situ information. Comparisons between satellite-based and in-situ measurements of land surface temperature (LST) are important for establishing confidence in the utility of remotely sensed information to monitor and help improve the lived experience in cities. The objective of this study is to determine the capability of Landsat-8 Thermal Infrared Scanner (TIRS) to measure fine-scale temperature variation in a moderately sized urban area with a mixture of land-cover types. Ground-Level Temperature (GLT) was measured at 13 sites using iButton® Thermochron® temperature sensors from 13 June 2013 to 28 October 2014. Landsat-derived LST was compared to in-situ GLT using 30 Landsat-8 TIRS images for the commensurate time period. Sites with 1) eastern solar exposure; 2) low tree canopy coverage; and 3) proximity to impervious surfaces have higher annual temperature and greater offset from Landsat-derived LST. Sites with more than 47% tree canopy coverage have a more consistent LST and GLT relationship, (e.g. MAE < 3.74°C), show lower annual variability (e.g. r2 > 0.85), and also experienced low LST variability over the time series (e.g. coefficient of variation 0.007). Results indicate that site characteristics and land-cover type affect the offset between in-situ air temperature measurements and satellite-derived LST.http://dx.doi.org/10.1080/15481603.2020.1818950land surface temperature (lst)in-situ sensorsurban tree coverlandsat-8 tirssurface urban heat island (suhi)
spellingShingle A. Elmes
M. Healy
N. Geron
M.M. Andrews
J. Rogan
D.G. Martin
F. Sangermano
C. A. Williams
B. Weil
Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
GIScience & Remote Sensing
land surface temperature (lst)
in-situ sensors
urban tree cover
landsat-8 tirs
surface urban heat island (suhi)
title Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
title_full Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
title_fullStr Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
title_full_unstemmed Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
title_short Mapping spatiotemporal variability of the urban heat island across an urban gradient in Worcester, Massachusetts using in-situ Thermochrons and Landsat-8 Thermal Infrared Sensor (TIRS) data
title_sort mapping spatiotemporal variability of the urban heat island across an urban gradient in worcester massachusetts using in situ thermochrons and landsat 8 thermal infrared sensor tirs data
topic land surface temperature (lst)
in-situ sensors
urban tree cover
landsat-8 tirs
surface urban heat island (suhi)
url http://dx.doi.org/10.1080/15481603.2020.1818950
work_keys_str_mv AT aelmes mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT mhealy mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT ngeron mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT mmandrews mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT jrogan mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT dgmartin mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT fsangermano mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT cawilliams mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata
AT bweil mappingspatiotemporalvariabilityoftheurbanheatislandacrossanurbangradientinworcestermassachusettsusinginsituthermochronsandlandsat8thermalinfraredsensortirsdata